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Abstract 

The task of solving optimal engineering design problems is 

considered as a demanding decision-making process where the 

real-life industrial problems typically have to be considered from 

very different perspectives. In this context the most logical 

approach to achieving the best solution, at the presence of 

multiple design criteria and numerous design variables, has been 

the task of performing scientific optimization to produce potential 

solutions for further decision-making. Accordingly multiple 

criteria decision-making approaches to optimal engineering 

design problems, via employing efficient, robust, global and multi-

objective optimization algorithms, have brought a significant and 

competitive advantage to the optimal design. However most of 

these approaches, due to the characteristics of the real-life 

problems, often associated with the usage, dimensionality, and 

high computational cost of the objective evaluations, have not 

been practical and widely acceptable in engineering design 

community. Here the difficulties and further requirements of 

utilizing the optimization approaches in optimal engineering 

design are discussed with a more emphasis on challenges to 

complex geometries, dimensionality, and multiple criteria nature 

of the real-life engineering design problems. As a response to the 

considered challenges, performing the optimizations approaches 

in the framework of an integrated design environment is proposed 

as the key success to win industry. 

      Further this research the metamodels in general approaches 

to optimal engineering design, are seen as the essential but not 

sufficient tools to enhance creating the efficient global 



iii 

 

optimization approaches in dealing with dimensionality. In fact 

by extension the dimension of multiple criteria decision-making 

problems which has been mostly due to the increasing number of 

variables, optimization objectives, and decision criteria, 

presenting a decision-maker with numerous representative 

solutions on a multidimensional Pareto-optimal set can not be 

practical in engineering applications. Accordingly for better 

dealing with the ever increasing dimensionality a supplementary 

decision-support system to enhance the metamodels is proposed. 

As the result an improved decision procedure is formed according 

to the limited human memory and his data processing 

capabilities. In this context the research further contributes in 

shifting from generating the Pareto-optimal solutions, to the 

reactive and interactive construction of a sequence of solutions, 

where the decision-maker is the learning component in the 

decision-making loop. To doing so the conventional evolutionary 

and interactive optimization and decision-making algorithms are 

updated by reactive search methodology, empowered with the 

advanced visualization techniques, in the framework of an 

integrated design environment. 
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1    Summary of contributions     
Due to highly expensive numerical analyses in engineering and 

process simulations [1], [2], for an optimal design, decision-

makers (DMs) have been urged to extract as much information as 

possible from a limited number of test runs. A vast number of 

statistical and optimization algorithms exist to extract the most 

relevant qualitative information from a database of experiments 

in order to support the decisions in real-life optimal engineering 

design where a number of objectives in multiple design criteria 

from very different perspectives are to be considered 

simultaneously [3]. Besides, the multiobjective optimization 

(MOO) algorithms [4], [5], offer a significant competitive 

advantage in different fields of optimal engineering design where 

the conflicting objectives are simultaneously considered leading to 

an overall insight into the problems.    

The critical survey of Stewart [6] on the status of multiple 

criteria decision-making along with our state of the art surveys on 

the existing algorithms, which are included in this thesis [1], [2], 

[7], [8], [9], [10], report the needs for further improvements in 

today’s ever increasing complexities in order to be able to 

efficiently deal with real-life applications. As a respond to the 

reported needs, this thesis preliminary propose a supplementary 

decision-support system based on classification [11] to identify the 

most relevant variables in the optimal design problems, in 

particular, in shape optimization for complex geometries, leading 

to a smaller and manageable design space. Although the 

examined case studies are proposed in dealing with geometrical 

and shape optimization problems originally, however the feedback 
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from industries and multicriteria decision-making (MCDM) 

research community [12], [13], [14], and [15], indicate that the 

proposed methodology is also suitable for general applications to 

optimal engineering design. The citations and revisions of our 

initial proposed methodology [11] in a number of publications 

including Elsevier [13] and Springer [14], [15] have motivated the 

further investigations, researches and publications [16], [17], [18], 

[19], on this realm.    

The thesis’s further contributions to shape optimization for 

complex geometries e.g., [20], [21], and [22], include the 

development of a design strategy for general optimal engineering 

design problems on the basis of Non-uniform rational B-spline 

(NURBS) parameterization [23], [24]. Here the existing 

methodologies [25], [26], [27], [28] are improved in terms of 

integration, optimization algorithms used, complex geometrical 

modeling methodology and parametrization. The considered 

applications and case studies utilizing the proposed method would 

cover a wide range of optimal design problems in hydrodynamics 

[29], [30], [31], aerodynamics [32], [34], built environments [33], 

[34], and thermal-fluid structural design [1], [35]. The obtained 

results, communicated via the above-mentioned publications are 

promising.         

However in the way more challenging real-life applications 

such as optimal design of composite textiles [36] where the 

detailed-complex geometry parametrization, big data and 

increasing the number of criteria in decision-making become the 

design’s new issues the strategy would demand for the further 

improvements. For this reason in the improved design strategy 
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the former NURBS-based shape parametrization method is 

enhanced with a novel methodology called generative algorithms 

[37], [78]. Furthermore in order to deal with big data and the 

increasing number of design criteria, the optimization and 

decision-making algorithm has been empowered by reactive 

search optimization methodologies and brain-computer 

optimization [39], [43], [38], [42]. The methodology, case studies, 

and results have been communicated via a number of publications 

[40], [41], [42], [43], [44], [45], [46], [47]. Moreover the final 

workflow integrated with materials selection [49], [50], [51], [52], 

[53] has been approved and recommended by the Europe’s leading 

computer aided engineering (CAE) design company to the 

industry [52]. Furthermore the method has been continuously 

improved to fulfilling the needs of new fields of applications e.g., 

computer vision [48].        

Worth mentioning that in the real-life applications an optimal 

design strategy receives the contributions of many different 

departments and multiple criteria trying to meet conflicting 

requirements of a design simultaneously. In this context because 

of the emphasis on human-technology interactions this thesis 

overlaps with other disciplines, particularly with business 

intelligence and enterprise decision management in which we 

should have also considered them as well in a number of research 

works and publications [54], [55], [56], [57], [58], [59], [60], [61], 

[62], [63], which in fact are not include in this thesis.  

The contributions of the thesis with the corresponding 

publications are the following:   
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1. Section one, two and three including state of art surveys 

on global optimization, multi-objective optimization, and 

MCDM [1], [2], [7], [8], [9], [10]. 

2. Section three proposing a design strategy for general 

applications to engineering optimal shape design in the 

framework of an integrated design environment [1], [29], 

[30], [31], [32], [34], [34], [35]. 

3. Section four proposing a supplementary decision-support 

system to metamodels based on classification to identify 

the most relevant variables in the optimal design 

problems [11], [16], [17], [18], [19]. 

4. Section five including further improvements on optimal 

design strategy utilizing reactive search optimization 

methodology in the framework of an integrated design 

environment  [40], [41], [42], [43], [44], [45], [46], [47], 

[48]. 

5. Section five including the concept of design integration 

with materials selection [49], [50], [51], [52], [53].   
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2    Introduction   
In today’s highly competitive market environments, engineering 

designs must be optimized if they are to succeed in accomplishing 

objectives while satisfying constraints. Considering further 

multiple criteria, additionally the product development lead-time, 

cost and performance must be optimized to ensure affordable and 

speedy reaction to the changing market needs. Thus, a deep 

understanding of the computational tools used for multiobjective 

optimization [4], MCDM [5], and simulation-based optimal design 

[77], is critical for supporting the engineering decision-making 

processes. Drawing on current researches, state of the art 

surveys, best-practice methodologies and developing tools 

illustrated by case studies, this thesis provides an overview to 

optimal engineering design as well as simulation‐based numerical 

design optimization with a more emphasis on challenges to 

complex geometries [64], big data [65], decision-making [66] and 

multiple criteria nature [6] of the real-life engineering design 

problems.      

 

MCDM, global and multi-objective optimization  

In an optimal engineering design environment solving the MCDM 

problem is considered as a combined task of optimization and 

decision-making. In fact as the process of MCDM is much 

expanded most MOO problems in different disciplines can be 

classified on its basis.   

The task of optimization in engineering design is considered 

as a very important and in the same time complicated task for 
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engineers to deal with. The problems of this type are mostly 

nonconvex, nonlinear and computationally expensive, including 

numerous variables and several conflicting objectives [5]. Solving 

the design optimization problems as such, which are mostly 

referred to black-box optimization problems [67], [68], is not a 

simple task. The black-box optimization problems with multiple 

objectives can be solved in several different ways. However the 

characteristics of these problems suggest that we should use 

global, multiobjective, robust, and efficient approaches to tackle 

the difficulties caused by several local optima, several conflicting 

objectives, and high computational cost of the objective 

evaluations. Meanwhile engineers prefer to utilize the efficient, 

easy to use, global and multiobjective approaches [67], [68] in 

order to solve these problems accurately and effectively.     

 

Interactive, evolutionary and response surface 

approaches to multi-objective optimization 

problems       

Understanding the true nature of a particular problem followed 

by algorithms selection task, are considered vital for effective 

modeling approach to the optimal engineering design [4], [5]. For 

this reason in this thesis a huge amount of efforts have been 

spent on identification the characteristics of each family of 

problems and the potential corresponding algorithms. Among all 

algorithms to MCDM, interactive [70], evolutionary [4] and 

response surface [3] methods have been of our particular 

interests. A classification of the MOO methods including their 

recently improved algorithms have been well presented in the 
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thesis as a summary to a number of our published state of the art 

surveys and case studies, e.g., [1], [2], [7], [8], [9], [10]. Although 

considering shape optimization problems where the aesthetics 

criterion is a common objective evaluation function in the optimal 

design tasks the interactive approaches have been found to be 

more effective as they are capable of supporting the DM actively 

in finding the preferred Pareto optimal solution by continuously 

involving the preferences in the solution process to better guide 

the search.  

Nevertheless prior to selecting a proper algorithm for a 

particular problem, utilizing a decision-support system with the 

ability to reduce the design space would help decreasing the 

complexities as well as providing the ability for understanding 

the true nature of the problem.  

Optimization research communities have developed numerous 

approaches to global and multi-objective optimization so far 

including response surface methodologies, interactive, and 

evolutionary algorithms which are mainly surveyed in [3], [4], [5], 

[6], [7], [69], and [77]. However most of these approaches, due to 

the difficulties often associated with the usage and also a number 

of particular requirements mostly associated with increasing the 

design space which we have discussed them in details in e.g., [16], 

[17], [18], [19], haven’t been really applicable in real-life 

engineering optimization problems within the industry. As a 

response to this issue our thesis identifies the most effective tools 

for supporting the process of engineering optimization and 

optimal design, within the existing global and multiobjective 

optimization approaches.  
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3    Reducing the design space  

Hypothesis 1 Reducing the design space is beneficial in 

understanding the true nature of a particular optimal design 

problem. In this context the classification task of data mining 

could effectively rank the design variables and identify the most 

relevant ones to the design objectives leading to extract more 

information from the optimization variables and objectives in an 

efficient way.    

Increasing the size of MCDM models, in terms of objectives’ 

and variables’ dimension have become more demanding, as the 

models have to be capable of dealing with higher computation 

cost, noises and uncertainties.  According to [2], [3], [8], [9], [10], 

where the applications of meta-modeling optimization methods in 

industrial optimization problems are discussed, some of the major 

difficulties and challenges in real-life engineering design 

problems counted as; (1) involvement of the multicriteria and 

numerous objective functions, (2) the black-box function form of 

criteria which cannot be explicitly given in terms of design   

variables, and (3) there is a huge number of non-ranked and non-

organized input variables to be considered. In fact often in 

modeling the optimal engineering design problems, the value of 

objective functions is not clearly defined in terms of design 

variables. Instead it is obtained by some numerical analyses such 

as finite element structural analyses [31], [49], fluid mechanics 

analysis [29], [30], thermodynamic analyses [1], [35], and 

chemical process simulations and reactions [2], [7]. These 

analyses for obtaining a single value for an objective function are 

often time consuming and most expensive. Considering the high 
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computation costs the number of CAE evaluations are indeed 

subjected to minimization.  

Table I. Part of the dataset considered in [17]; including 

computer-aided design (CAD) model, geometrical variables and 

numerical analyses 

   
Variables 

Configuration  

V1-V30 

CAD Model Displacement 

Distribution 

Objective 

/target 

variables 
 

0,0.84,0.99,0.84,0.62,0.26,

0,-0.20,-0.40,-0.36,-0.70,-

0.58, 

0,0.59,0.78,0.56,0.30,0,-

0.21,-0.24,-0.38, 

0,1,1.2,1,0.8,0.4,0.2,0,-

0.4,-0.48, 

0.6,-0.8,-0.72, 

 
  

 

O1=c  

O2=c 

O3=b 

 

 

0.62,-0.81,-0.70, 

0,0.86,0.1,0.82,0.60,0.25,0

.01,-0.20,-0.39,-0.39,-

0.70,-0.58, 

0,0.58,0.76,0.57,0.32,0,-

0.21,-0.23,-0.37, 

0,1.1,1.21,.9,0.82,0.42,0.1

8,.1,-0.41,-0.46,-   

 

O1=b  

O2=c 

O3=a 

 

  

As a response to the considered challenges our proposed 

methodology which is described in [16] would help in reduction of 

the MOO and also robust optimal design search space which 

indeed would lead to the need for a fewer number of CAE 

evaluations. For the reason of reducing the number of analyses as 

few as possible our methodology works as a supporting tool to the 

meta-models [3], [8] and interactive MOO [7], [70].     

The methodology is based on the classification task of data 

mining which investigates the effect of each design variable on 

the design objectives. In this method the target categorical 
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variables could be defined according to the result value of 

numerical analyses performed by any of the CAE codes. 

In our first work [11] the workflow and the correspondence 

algorithm were initially proposed. Yet the citations and revisions 

of the initial proposed methodology in a number of publications 

including Elsevier [13] and Springer [14], [15], had motivated the 

further investigations, and as the result in the followed 

publications i.e., [16], [17], [18] and [19] along with examining 

different case studies the proposed strategy has been 

continuously improved.    

Result 1 The classification task of data mining has been 

introduced as an effective option for identifying the most effective 

variables of the MOO problem in a MCDM system. A classification 

algorithm was utilized analyzing the effect of each design variable 

to the identified objectives. The number of the optimization 

variables has been managed very effectively and reduced in the 

given case studies i.e., [16], [17], [18], and [19]. The achieved 

preprocessing results as the reduced number of variables would 

speed up the process of optimization due to the delivered smaller 

design space. Data mining tools have been found to be effective in 

this regard. It is evidenced that the growing complexity of MCDM 

problems could be handled by a preprocessing task utilizing data 

mining classification. The modified methodology is demonstrated 

successfully in the framework. The promising results are the proofs 

for the achievement of a simple, fast, and affordable process to 

industries.   
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4    Shape optimization for complex 
geometries 

Hypothesis 2 Manipulating the NURBS curve and surface 

parameterization with the optimization algorithms via computer-

aided design packages could be considered as an effective optimal 

design strategy for developing the concepts with complex 

geometries.  

In this thesis shape optimization basically is referred to 

changing the external borders of the mechanical components 

where the geometry is defined in terms of surface and curve 

parameters allowing more freedom to manipulate. Shape 

optimization for complex geometries is an interesting and popular 

branch of optimal engineering design where variables and 

constraints are characterized on the basis of geometrical 

definitions e.g., dimensions, distances, curvature and aesthetic. 

According to the theories, approximations, and computation of 

shape optimization [26], with a powerful parameterization 

process over geometrical models, optimization the complex 

geometries can be conducted using standard optimization 

methods including either direct or indirect design methods 

whether gradient-based methods or global search approaches. 

Such parameterization is very important in CAE simulation-

based design where goal functions are usually complex functions 

evaluated using numerical models e.g. CFD and FEA.    

Toward approaching the framework of a general strategy for 

developing complex shapes in the engineering design our study 
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brings together techniques that have their origins in the field of 

optimization and new tools of geometrical innovation.  

Figure 1. Shape optimization for complex geometries; the 

workflow  
 

The major achievement in parameterization has been the 

theory of Bezier curves and surfaces which later was combined 

with splines as an earlier version of NURBS [26]. The use of 

evolutionary tools for optimizing the existing shapes by Splining 

is the most effective design optimization technique to be widely 

used in different industries e.g., [25], [27], [28]. Our surveys [20], 

[21] and [22], along with Renner and Ekart’s [71], are devoted to 

this subject where the integrated Splined geometry with 

evolutionary tools form the basis of an evolutionary design 

process. In this methodology the optimal design is seen as a 

complex optimization task, in which the parameters describing 

the best quality design are searched. Yet the process has been 

limited only to optimal design of the simple geometries. In this 

context proposing NURBS [23], [24] parameterization, as a 

standard description method of surfaces in CAD software in 

industry, because of its efficient computational implementation 

with numerical stability and simple formulation providing smooth 

shape changes which are highly suited for the parameterization of 
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a design allows obtaining versatile new shapes while maintaining 

a reliable control over admissible geometries.   

In terms of optimization and making the final decisions 

according to the design preferences in an engineering optimal 

shape design strategy, the DMs often cannot formulate all of their 

objectives and preferences at the beginning. Instead they would 

rather learn during the process. This fact would employ lots of 

uncertainty and inconsistency.  The uncertainty is even increased 

when further objective evaluation functions such as beauty are 

involved, as described in [22], [40], [42], and [43]. Consequently 

interactive approaches have been trying to overcome some of 

these difficulties by keeping the user in the loop of the 

optimization process and progressively focusing on the most 

relevant areas of the search directed by DM.   

With utilizing the latest achievement in computational 

geometric design and optimization in this thesis the current 

techniques of parameterization, and the overall strategy, have 

been improved in terms of (1) manipulating the initial geometry 

(2) implementation and (3) integration with advanced 

optimization tools. Our proposed strategy, described in [20], [21], 

[22], is formed on the basis of NURBS integrated with 

evolutionary [4] and interactive MOO tools [70]. These 

optimization algorithms constitute a class of search algorithms 

especially suited for solving complex geometrical optimization 

problems. This provides new possibilities in dealing with complex 

geometries which were virtually unthinkable before.  

Strategy; the research, development and successful case studies 

on MCDM and MOO algorithms for engineering optimal design 
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are numerous [4], [5], [6], [26], [43], [66], [69], [70]. However the 

expansion and progress of applicability and popularity of these 

algorithms within engineering design communities have been 

very slow.  In fact an algorithm can be widely utilized when only 

it is implemented within an integrated design environment of an 

optimization package where its ease of use, and its further 

integration requirements are well customized.  Here the idea 

behind the design strategy is “the idea of integration”. It is 

assumed that with an effective integration of the today’s already 

existing resources of CAD, CAE, and optimization, promising 

results can be achieved. Consequently the improvement on 

geometrical parameterization techniques, and benefiting from 

advanced interfaces of commercial optimization packages would 

be essential. This ideology of design is introduced as the future 

trend for engineering optimal design.  In the considered case 

studies instead of getting to the details of the optimization 

algorithms utilized, the focus would be on the level of integration 

and the potential advancement we could expect from the novel 

coupling of CAD, CAE, and optimization for the future designs.        

 

 

 

 

 
 
 

Figure 2. Optimal design of the built environments [33], [34]; the 

initial geometry of a built environment. 
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Figure 3. Optimal design of the built environments [33], [34]; an 

optimal configuration   

 

Result 2 The applicability of the proposed NURBS 

parametrization integrated with MOO algorithms have been 

shown in a series of case studies within different fields of optimal 

engineering design. The applications include aerodynamic optimal 

design [29], [30], [31], thermal-fluid structural optimization [35], 

hydrodynamic design [32], [34] and optimal design of built 

environments [33], [34]. The published case studies include further 

details on coupling with the other potential finite element analyses 

in ANSYS, involving other CAD systems, optimization algorithms, 

decision-making, postprocessing, and reporting [32].    

 

5     Further improvements on the optimal 
design strategy 

Motivation A typical NURBS model involves far more control 

points than are needed for the geometrical modeling which 

needlessly complicates fairing and form finding. A new surface 

representation, which eliminates the superfluous rows and 
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columns of control points that are unavoidable in NURBS will be 

a great deal of support. In fact the recent advancements in 

computational design has the potential to deliver the capability of 

accessing to a controlled process of complex geometry 

parameterization and generating vast space of possible solutions 

and exploring them.   

Hypothesis 3 Enhancing the NURBS-based parametrization of 

the initial proposed optimal design strategy with generative 

algorithms [37], [78], can improve the overall performance of the 

strategy in dealing with geometrical complexity of the fine 

products.   

Utilizing the novel parameterization methodology of 

generative algorithms for modeling, generative and reasoning 

allows optimization-analyses and parametric systems to be 

perfectly integrated. This means achieving an integrated 

infrastructure which would be a developed and more convenient 

version of the earlier studies which is capable of supporting 

optimal changes in geometry. The proposed generative algorithms 

as an associative parametric modeling system automates the 

optimal design process and accelerates the design iterations. Our 

updated optimal design strategy [44], [49], [50] delivers 

significant advantages as it speedy models geometry, generates 

forms, captures and manages complex geometric relationships 

and rapidly explores a broad range of design alternatives in less 

time.   



17 

 

 

Figure 4. Draping simulation in textile composites [49], [50] 

considering a number of draping degrees 

Result 3 The former strategy is updated by enhancing the 

manual NURBS parameterization method with generative 

algorithms. The new approach empowered by computational 

methods, can direct creativity to deliver freer forms and assemblies 

via quick exploration of a broad range of alternatives for even the 

most complex geometry. Our research delivered an unrivaled 

creative flexibility, in order to achieve the results which have been 

virtually not valid before e.g., draping process simulation in textile 

composites [49], [50].     

Hypothesis 4 Utilizing reactive search and brain–computer 

optimization algorithms [38], [39], [42], [43], instead of 

conventional algorithms e.g., evolutionary multi-objective 

optimization and interactive multi-objective optimization can 

improve the overall performance of the updated strategy in dealing 

with increasing the number of design criteria and big data.  

A MOO algorithm controlling the geometrical parameters is 

the core interface to the CAD, numerical analyses and DMs which 

are integrated to development process of shapes. However to 
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make informed decisions in the optimal design strategies on the 

basis of generative algorithms the proposed methodology hasn’t 

been integrated with a suitable optimization tool capable of 

increasing the number of design criteria and big data. In fact in 

developing a MCDM design environment relying only on 

evolutionary design components, in today’s ever-increasing 

complexity when often numerous design objectives are involved, 

is not sufficient. Applied optimization to optimal design provides 

a number of efficient MOO algorithms which facilitate a DM to 

consider more than one conflicting goals at the time. However the 

reality of applied decision-making in optimal design has to 

consider plenty of priorities and drawbacks to both interactive 

and non-interactive optimization approaches used in the initial 

strategy.   

Although the mathematical representative set of the decision-

making model is often created however providing a human DM 

with numerous representative solutions on a multi-dimensional 

Pareto front is way complicated and not practical [43]. This is 

because the typical DM cannot deal with more than a very limited 

number of information items at a time [72]. Above facts, as also 

mentioned in [42], and later in [38] demand a shift from building 

a set of Pareto front, to the interactive construction of a sequence 

of solutions, so called brain-computer optimization [39],[43], 

where the DM is the learning component in the optimization loop, 

a component characterized by limited rationality and advanced 

question-answering capabilities. This has been the reason for the 

systematic use of machine learning techniques for online learning 

schemes in the optimization process [43], [44], [45], [46], [47].  



19 

 

The methodology has been described in [40], [41], [42] and 

[44], and since then it has been continuously improved to 

fulfilling the needs of other fields of applications e.g., computer 

vision [48].   

 

 

 

Figure 5. Case study; considering four objectives in addition to 

beauty evaluation function in a multi-dimensional graph [48]   

 

Result 4 In order to improve the performance of optimal design 

strategy a decision-making procedure has been proposed according 

to the human memory and his data processing capabilities. The 
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optimization module has been upgraded with the aid of reactive 

search optimization. In fact the initial optimal design strategy was 

significantly improved in terms of MOO and decision-making in 

dealing with increasing number of criteria and considering 

objectives such as beauty allowing for an exploration of a broader 

field for possible solutions to a design problem. The description of 

the new concept of design strategy, the ability to introduce 

automatic changes in complex shapes, case studies and the impact 

on global design performance are presented in [40], [41], [42], [43], 

[44], [48].  

  

6    Integration of the optimal design 
strategy with materials selection 

Hypothesis 5 Considering shape optimization and materials 

selection simultaneously by including the materials characteristics 

into the geometry parameters with the further aids of reactive 

search optimization, data mining, and visualization can perform 

an optimal combination of geometry and material so that the effect 

of changing materials properties on the geometry of a component 

design can be directly evaluated.  

The area of design decision-making for simultaneous 

consideration of the geometrical solution and materials selection, 

which is in fact needed at the early design stage is relatively 

weak. Although the importance of integrating materials selection 

and product design has been often emphasized [73]. Yet The 

engineering designer often assumes a material before optimizing 

the geometry. Clearly this approach does not guarantee the 
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optimal combination of geometry and material [74]. The usage of 

multi-objective optimization, combined numerical analyses and 

MCDM approaches for structural materials selection problems 

are well reviewed in [76]. In the proposed method of this thesis, 

previously published in [49], [50] and [51], the materials 

properties are directly transmitted into geometry parameters so 

that the effects of changing materials properties on the geometry 

and dimension of a component design and overall product 

performance can be directly evaluated. In developing the 

methodology the aspects of modeling, data mining and 

visualization the data related to materials selection are 

considered where the interesting patterns are automatically 

extracted from our raw data-set. Furthermore in our following 

publications [44], [45], [46], [47], [53], utilization the multi-

objective optimization and decision-making, with a particular 

emphasis on supporting flexible visualization is discussed where 

the advanced visual analytical interfaces are involved to support 

the DM interactively.  

Result 5 The methodology was used in the case study of optimal 

design of textile composite structures [49], [50], where a wide 

variety of material combinations, reinforcements, geometries, and 

architectures in the specific case of mechanical modeling of 

draping raised the need for utilizing such tool. Although the 

applicability of the proposed workflow can be customized for 

different problems and usage contexts in industry.   
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Figure 6. Mechanical simulation of draping process including a 

combined mechanical modeling of compression, bend, stretch, and 

shear shown from two different draping angles; considering 

geometry and materials selection simultaneously. 

The preliminary tests of the optimal design-integrated materials 

selection strategy in the concrete context of designing the multiple 

dome shapes, have shown the effectiveness of the approach in 

rapidly reaching a design preferred by the DM. The results have 

been published in the simulation based engineering & science 

magazine [52] where the strategy has been approved and 

recommended to the industry by the Europe’s leader and key 

partner in design process innovation; ENGINSOFT [52]. 
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7    Conclusions   

Performing the process of optimal engineering design within the 

integrated design environment of an optimization package where 

the ease of use, and the further coupling and integration 

requirements are well customized can effectively fill the gap 

between optimization approaches and optimal engineering design 

in industry. The benefits further include that the optimization 

algorithms whether evolutionary or interactive's can easier be 

enhanced by metamodels, and the optimization results can be 

better communicated to the decision-maker via effective graphical 

user interfaces, and finally the decision-support tools can make 

the decision-making task more convenient for engineers. In fact 

with an ideal integration of the today’s already existing resources 

of CAD, CAE, and optimization tools achieving the promising 

results can be more convenient for engineers. Pursuing the 

proposed design strategy in this thesis has shown promising 

results in shape optimization applications. Furthermore 

consideration of the different combinations of CAD, CAE and 

optimizer in order to find the ideal combination of tools for a 

particular engineering design application, in this case; fluid 

dynamics optimal design, has been easier facilitated.       

     Concerning the dimensionality which is often the case in 

optimal engineering design; it is discussed that in today’s ever 

increasing design complexity, by extension the dimension of 

MCDM problems which is mostly due to increasing the number of 

variables, optimization objectives, and decision criteria, 

presenting a decision-maker with numerous representative 

solutions on a multidimensional Pareto-optimal frontier is way 
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complicated and not practical indeed. In this thesis in order to 

deal with the dimensionality firstly a supplementary decision-

support system on the basis of classification task of data mining 

is proposed. This technique has been shown to be effective in 

reducing the design space by ranking the importance of the 

design variables according to the objectives. The considered case 

studies in shape optimization have proved the simplicity and the 

effectiveness of the proposed technique in the real-life industrial 

application. Secondly, as a potential replacement to evolutionary 

and interactive algorithms, for today’s large-scale optimal 

engineering design problems, the reactive search optimization 

strategy in the framework of an integrated design environment is 

proposed where the brain-computer interactions and advanced 

multidimensional visualization tools can well deal with 

dimensionality and computational costs in tough decision-making 

tasks. Consequently the promising achieved results from solving 

a number of demanding case studies have shown the effectiveness 

of the approach in dealing with dimensionality. 
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