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Introduction

Optimization is a basic tool in applied research, engineering, business, and
sciences. Operations research (OR) has become a key component of modern-
day decision-making in such fields as aerospace, biotechnology, finance, forestry
and agriculture, energy, telecommunication, transportation and logistics, the
Internet, etc. A survey from 1993 showed that nearly 85 percent of the five
hundred largest companies in the United States used optimization models [45].

First application area was the military operations during the II. World War.
After the ”heroic time”1 came the ”golden age”1, when many researchers at-
tempt to made linear programming the most frequently used optimization tech-
nique not only in military applications but also in science and industry. In
those days developed G. B. Dantzig his simplex algorithm [12] which became
the most widespread algorithm and also H. W. Kuhn published his Hungarian
method [29] based on a research of Jenő Egerváry and Dénes Kőnig for solving
assignment problems. Then came the ”crisis”1 period when researchers strived
to develop different algorithms such like ellipsoid algorithm by L. G. Khachian
[26] (the first polynomial time algorithm) and several variations of interior-point
method (most of them based on the Karmarkar’s algorithm [23]). More infor-
mation about the history of linear programming can be found in [13], [27].

The next period in the history of OR is connected with the spread of com-
puters. Performance leaps and continuous improvement of computer hardware
might be a reason for the success of optimization algorithms (especially the sim-
plex algorithm). The most important challenge is to use the well-known algo-
rithms efficiently in computational environment by developing powerful codes.
Although LP softwares and computers have became much faster, LP models
have increased in size. More efficient algorithms and improved implementation
techniques are therefore still very important. Large scale problems require enor-

1Historical classification from [27].
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x INTRODUCTION

mous computational effort, and because of floating point arithmetic numerical
inaccuracies can occur and also accumulate. These numerical errors can affect
not only the final solution but also the number of iterations which can dramati-
cally rise at any time if a small value, which is actually a numerical garbage, was
wrongly chosen as a pivot element. These phenomenon has motivated several
research on algorithmic techniques that are numerically more stable and also
efficient.

Also, we were motivated by the fact that large scale problems to be solved
correctly and efficiently usually require such special additional computational
techniques as preprocessing and scaling. These techniques very often lead to
considerable performance improvement of used solvers.

The main goal of this dissertation is to present the methods developed by
myself during my PhD studies for preprocessing optimization problems (espe-
cially for Linear-Fractional (LFP) and Integer Programming (IP) models) in
order to obtain a more stable and faster solution process.

The dissertation consists of the following parts.
Section 2.1 gives a detailed overview of the most important characteristics

of large scale problems from the point of view of performance of computational
processes.

In section 2.2 I consider some preprocessing techniques (presolve and scal-
ing), and adapt them to Linear-Fractional problems. Presolve is a special tech-
nique developed especially for model reduction and is based on the use of such
different operations like fixing variables, finding and removing redundant con-
straints, and detecting unbounded or infeasible problems. Preprocessing tech-
niques for LP problems published by E. D. Andersen and K. D. Andersen in
1995 [1] motivated researchers to develop further adaptations (like preprocess-
ing for quadratic programming problems by Cs. Mészáros [37]). In section 2.2.1
I discuss the main differences between the presolve and postsolve operations in
LP and LFP, and show that well known LP techniques in the case of LFP can
not be applied in original form and must be adapted in the corresponding way.
Here I also present my rules of presolve and postsolve adapted to LFP problems.

One of the most effective technique of preprocessing is scaling. It’s main
goal is to transform the model into a numerically more stable form. So in
the second part of chapter 2.2 I describe some scaling rules for LFP problems.
During our investigations I got acquainted with different variations of scaling
methods ([15], [36], [4]), which motivated me to develop more effective scaling
algorithms. Section 2.2.2 starts with the theoretical background of scaling in
LFP. In the following subsections I give a detailed overview of two well-known
scaling rules and describe my new scaling technique. The section ends with
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some implementation issue and test result.
The third part (Chapter 3) of this dissertation concerns with other type of

optimization problems, namely the Integer Programming (IP) problems. The
goal was the same: To improve computational efficiency of a well-known opti-
mization algorithm, the Branch and bound (B&B) method. Section 3.1 focuses
on the base frame of the B&B algorithm, describes some branching and searching
strategies and also discusses the importance of these rules emphasizing the role
of ”bound” value. In section 3.2 I give a detailed description of my new method
for calculating initial bound for branch-and-bound method. The idea is based
on the ”ray-method” by V. R. Khachaturov and N. A. Mirzoyan ([24]), which
was developed for solving IP problems. This theoretical method in the original
form has difficulties concerning computational implementation. So I used the
theoretical background and the main idea of Khachaturov’s ray-method to get
an integer feasible solution for branch-and-bound method. The section ends
with a numerical example and test results.



Chapter 1

Experiences on applications
of optimization techniques

Nonlinear optimization methods with and without constraints have been
frequently used in sciences and engineering for a long time. In this section
I briefly overview the applications of optimization techniques in which I took
part during the past few years.

Section 1.1 introduces an unconstrained minimization problem which was
used as a subproblem for calculating the parameters of isobar analog resonance
(IAR) when the optical potentials used are complex ([22]).

Section 1.2 presents some possible application area of LFP in economics.
As we can see in these sections the development of computational power

made it possible to handle complicated problems including large matrices, where
the number of floating point operations increased dramatically. Although the
precision of the representation of numbers has also increased the accumulation
of rounding errors sometimes causes difficulties. During these studies I also
experienced that large or badly scaled problems require special computational
techniques. This fact motivated my investigations on preprocessing techniques.

1.1 Physics

Cooperating with T. Vertse and R. Id Betan we used unconstrained min-
imization problem when expanding the complex energy shell model (CXSM)
calculation for complex potentials. In this type of optimization problem we

1



2 CHAPTER 1. EXPERIENCES ON OR APPLICATIONS

minimize a function F (x) x ∈ R7 x = (x1, x2, . . . , x7)T . In our case x repre-
sents the vector of seven different parameters to be determined by minimizing
the sum of squares of the differences between the complex values of the Scc-
matrix, and that of the single pole form S(E) calculated in an adaptation for
complex potentials of the framework of the Lane-model using complex energy
shell model (CXSM). My role in this research was to select the proper minimum
of the function F (x). This minimum corresponds to the isobaric analog reso-
nance (IAR). The IAR is calculated also by using the CXSM, where the IAR
belongs to one of the complex eigenvalues resulted by the diagonalization of a
complex matrix with size of several hundred.

The values of Scc at each Ei energy were calculated by solving the cou-
pled Lane-equations numerically by using 4th order Runge-Kutta method and
matching the solution at a distance Ras to the solutions of the Coulomb differ-
ential equation. This solution is obtained the standard coupled channel (CC)
method and Scc are the result of this method.

Here I have to mentioned that some sort of scaling of the x variables can be
performed by using the vector ESCALE which is able to keep balance between
the different components in vector x for computational calculations.

The application developed and performed for several IARs confirmed that
the CXSM method is able to reproduce the position and the full width of the
IAR even in the complex potential case.

In another work of us with P. Salamon and T. Vertse I used unconstrained
optimization with a simple non-linear real function of three parameters. While
in Lane-equations the nuclear potential with a Woods-Saxon (WS) form was
used, which had to be cut at or before Ras to be able to determine the element
of the S-matrix, in the potential form introduced by Salamon and Vertse (SV
potential [43]) the shape approaches zero smoothly without artificial cut-off. In
our paper [42] we calculated the complex poles of the S-matrix by varying the
strength of the potential well, i.e. the trajectories of the poles on complex energy
plane. To make SV potential resemble most to the WS form a minimization of
the function F (x) x ∈ R3 x = (x1, x2, x3)T was performed with the same
procedure used before. The squares of distances to be minimized were in this
case the differences of the two potential form at meshpoints in the range of
SV potential. The shapes of the pole trajectories were quite different for the
two potential forms, which has an important consequences in nuclear structure
calculations.

As a modification of the optimization I introduced a multi-objective mini-
mization, which forced also the derivatives of the shapes of the two potential
forms to be similar as much as possible. The results of this optimization will be
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used in a coming publication of us [14].

1.2 Economics

In these section I would like to show the importance of Linear-Fractional
Programming in real-world applications. Since [35] LFP problems appeared
in a wide range of research papers. Researchers use the linear fractional ap-
proach in well known optimization problems like network optimization ([44]) or
transportation problems ([46]).

Before I started to study this type of optimization problems I investigated
the application areas ([6], [7]). While in case of LP one can optimize a result
of some particular activity, like maximize the profit gained by the company
or minimize the cost of production or transportation, etc. Objective of LFP
problems reflects (in contrast of LP) the profit per unit of expenditure, cost per
unit of produced goods or cost of transportation per unit of transported goods,
etc.

We can use these two aspects on the same problem and we have to keep
in our mind that these two objective functions (one of them is linear and the
second one is linear-fractional) may lead to different optimal solutions.

To decide which type of objective we have to apply we can find suggestions in
[7] and also in [6]. E. Bajalinov showed that although profit maximization and
maximization of efficiency lead to different optimal solutions we can utilize these
different optimal solutions in order to obtain some more profit. He presents a
decision process in which we decide to apply the LP optimum, the LFP optimum
or a combination of them depending on the cost and the amount of money the
company can spend. Using these rules from [7] we can reach more profit than
in case of a simple LP optimization.



Chapter 2

Large scale problems

Here and in what follows we consider the following Linear Programming
(LP) and Linear-Fractional Programming (LFP) problems:

P (x) =

n∑
j=1

pjxj → min

subject to
n∑
j=1

aij︸︷︷︸
A=||aij ||m×n

= bi i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n.

Q(x) =
P (x)

D(x)
→ min

subject to
n∑
j=1

aij︸︷︷︸
A=||aij ||m×n

= bi i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n,

where P (x) =
n∑
j=1

pjxj + p0, D(x) =
n∑
j=1

djxj + d0 and D(x) > 0.

4



2.1. CHARACTERISTICS OF LARGE SCALE PROBLEMS 5

2.1 Main characteristics of large scale problems

The real-life LP models tend to be large in size. A reason can be the re-
quirement to create more realistic models. Not only the size of a large scale
model can make a problem ”hard” but also sparsity, special structure and other
properties may affect the performance and stability of algorithms and proce-
dures used to solve them. We can also define a measure to show how ”well or
badly” scaled a matrix is. The aim of this chapter is to present and to mark the
characteristics which can influence the computational effort required for solving
a problem. The structure of this part is based on [36].

2.1.1 Size

Size can be defined by the number of the elements of constraint matrix A or
the number of its columns and rows, i.e. variables and constraints. Obviously
the sense of term ”large-scale” is not the same in the 1960s and nowadays.
While 50 years ago problems only with several hundred rows and columns could
be handled, today we can read reports about solving problems with hundred of
thousands of variables and constraints.

2.1.2 Sparsity

Constraint matrices of large scale problems typically have quite a lot zero
entries. This feature is called sparsity. Moreover LP problems often have a
special structure by having sometimes identical blocks in the constraint matrix
A. Some of the operations research software tools can visualize the structure of
the problem to be solved. Usually such software tools generate some graphical
representation like shown in figure 2.1.

Numerically the sparsity is usually expressed as a ratio of the nonzero and
the total number of elements, that is

%(A) =
νA
mn

,

where ν is the number of nonzero elements and A ∈ Rm×n. Processing matrices
with the same size but different sparsity does not require the same computational
effort. Most of the problem collections (e.g.: NETLIB) available on the Internet
provide information about problem’s size (m,n) and its sparsity (νA) in a well
defined classification.
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Figure 2.1: Color coded matrix plot of 80BAU3B.mps from NETLIB

2.1.3 Fill-in

Let us consider an LP problem in the following form:

pTx→ min (2.1)

subject to

Ax = b (2.2)

x ≥ 0, (2.3)

where A ∈ Rm×n contains an m ×m unit matrix, so it is of full row rank and
m < n. Any combination of m independent column vectors from A is called
basis (B = {Aj : j ∈ JB}) and the corresponding variables are called basic
variables. A basic solution x = (x1, x2, . . . , xn) can be defined in the following
way:{

xj = 0, if xj is not a basic variable
xj is defined from the system

∑
j∈JB

Ajxj = b if xj is a basic variable

Simplex algorithm is an iterative algorithm which checks the optimality of the
current basis solution moving from basis to basis until termination. Two bases,
formed by columns of A, are called neighboring if they differ from one another
only in one column. Changing the basis means to replace the current B =
{As1 , As2 , . . . , Asp , . . . , Asm} basis with a neighboring one B′ = {As1 , As2 , . . . ,
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Asp−1, Ak, Asp+1, . . . , Asm}. Since Ak is also a column of A (m dimensional
vector) it can be expressed as a linear combination of the vectors of B:

Ak =

m∑
i=1

υiAsi

On the other hand, vector Asp in the new basis B′ can be represented as Asp =
B′η, where

η = (−υ1

υp
, . . . ,−υp−1

υp
,

1

υp
,−υp+1

υp
, . . . ,−υm

υp
)T

If we define matrix E as

E = [e1, . . . , ep−1, η, ep+1, . . . , em],

where ej denotes the jth column of the unit matrix, then all other basis vectors
from B can be expressed in the terms of the new basis B′ in the following way:

B = B′E or B′−1 = EB−1.

Fill-in is such a phenomenon when nonzeros appear in positions of zero
elements in matrix A during elementary transformations with matrix E after
every basis change. Let us consider how matrix E transforms a column vector
denoted by Asp = (a1, a2, . . . , am)T . Let us suppose that vector η is in position

p in matrix E and we rewrite equality EAsp = Asp in the following form

1 η1

. . .
...
ηp

...
. . .

ηn 1





a1

...
ap
...
am

 =



a1 + apη
1

...
apη

p

...
am + apη

m

 .

It is obvious that if ap = 0 then Asp = Asp , i.e. no operation is needed to
obtain the result, software can use a simple logical test to recognize this case.
If A is a large and sparse matrix there is a good chance that ap = 0.

On the other hand, if ap 6= 0 then the operation creates new nonzeros in the
positions where zeros were before. Formally, denote the index set of nonzeros
in η by E and in Asp by A. In this case the positions of newly created nonzeros

in Asp are in set |E\A|. We can see that the number of new nonzeros depends
on the density of vector η (here suppose that ap 6= 0).

It is obvious if there appears a small numerical inaccuracy in value of ap it
can cause many other errors during basis transformation.
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2.1.4 Measure of scaling

It is quite difficult to define which matrices are well scaled. The opposite
is somewhat easier. We can say a matrix is badly scaled if the magnitude
of nonzero elements are hugely different. Such matrices are quite difficult to
process in practice. Using the previous definition we can say that a matrix is
well scaled if the magnitudes of its nonzero elements are close to each other. So
the expectation for a scaling method is to reduce the spread of magnitudes as
well as it can. To reach this aim we can scale columns and rows as many times
as we need (or as possible).

For measuring the spread of magnitudes of nonzero elements of matrix A
Fulkerson and Wolfe [15] (and also Orchard-Hays) recommended

σ(A) =
max|aij |
min|aij |

, over all aij 6= 0, (2.4)

and say that a matrix is well scaled if quantity σ(A) is not larger than a threshold
value of about 106 − 108.

2.2 Preprocessing in Linear-Fractional program-
ming

The real-world LP and also LFP models tend to be large in size. In practice
large-scale problems are not solved in the form they are originally formulated.
There are numerous operations that can be used to increase the reliability and
efficiency of solving. These operations are called preprocessing. Presolve al-
gorithms are a part of preprocessing and they are also used for reducing the
size by eliminations, improving the numerical characteristics, detecting infeasi-
bility or unboundedness, fixing as many variables as possible without solving
the problem. Here we can mention the checks being used for detecting the
weaknesses of a model, such as empty rows/columns or redundant constraints
which can be removed (if it is possible) in order to reduce the size. Most LP
solvers contains some presolve algorithms, and provide us different options to
set the parameters. For instance the most well known of them, IBM CPLEX,
executes some presolve operation whereby the problem input by users is exam-
ined for logical reduction opportunities. The goal is to reduce the size, which
typically translates to a reduction in total run time (even including the time
spent for presolve itself). CPLEX allows us to set the Presolve switch param-
eter, CPX PARAM PREIND. It decides whether CPLEX applies presolve
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during preprocessing or not. The following values are the possible options [50]:

Value Meaning
0 Do not apply presolve
1 Apply presolve (default)

Table 2.1: Presolve settings in CPLEX

CPLEX also reports about the presolve operations executed when the prob-
lem has already been solved. In the output we can see information about how
many rows and columns were eliminated.

Also another professional solver, LINGO, provides us an option to set on
or off the model reduction. In LINGO API we can set the value of REDUCE
parameter. In graphical user interface we can use the appropriate combobox as
it can be seen on the following figure.

Figure 2.2: LINGO model reduction settings
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2.2.1 Presolve

Preprocessing is very important for solving large optimization problems irre-
spectively of using interior point or simplex algorithm. Most of the professionally
developed solvers (like IBM CPLEX, LINGO, GUROBI, etc.) automatically use
preprocessing techniques to maintain numerical stability and improve perfor-
mance. Even though computers have become even faster, the real-world models
have increased in size. The reason can be the growing complexity requirements
and the new sophisticated model generators too. The aim of preprocessing is to
reduce the problem size, find redundancy and detect the unbounded or infeasi-
ble problems. When performing these manipulations some data from the dual
problem may be lost or distorted. To restore such data some special postsolve
operations are required.

In this section I describe the main results of my results connected with
preprocessing techniques in LFP. My investigations are based on well-known
preprocessing techniques used in LP. I adapt these techniques to LFP problems.
Some of these preprocessing algorithms can be used in LFP without any changes,
but the others have to be modified. In certain cases this adaptation is not
trivial. Not only preprocessing but also postsolve techniques are different in the
case of linear fractional programming problems. I present some preprocessing
techniques with the corresponding postsolve operations based on [1], [37] and
gives an overview of its adaptation into LFP.

In this section I consider some presolve techniques and present how I adapted
them to LFP. First let us consider an LFP problem in the following form:

Q(x) =
P (x)

D(x)
→ min (2.5)

subject to

bi ≥
n∑
j=1

aijxj ≥ bi, i = 1, 2, . . . ,m, (2.6)

Uj ≥ xj ≥ Lj , j = 1, 2, . . . , n, (2.7)

where

P (x) =

n∑
j=1

pjxj + p0, D(x) =

n∑
j=1

djxj + d0,

and D(x) > 0, ∀x = (x1, x2, . . . , xn)T ∈ S. S is the feasible set defined by
constraints (2.6) and (2.7).

And its dual:
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y0 → max (2.8)

d0y0 −
m∑
i=1

bisi +

m∑
i=1

biqi −
n∑
j=1

Ljwj +

n∑
j=1

Ujvj ≥ p0 (2.9)

djy0 +

m∑
i=1

aijyi + wj − vj = pj j = 1, 2, . . . , n (2.10)

yi − si + qi = 0, i = 1, 2, . . . ,m (2.11)

s, q, v, w ≥ 0 (2.12)

where v = (v1, . . . , vn), w = (w1, . . . , wn), s = (s1, . . . , sm) and q = (q1, . . . , qm)
are vectors of dual variables. I={1,. . . ,m} and J={1,. . . ,n} are the index sets
of constraints and variables.

2.2.1.1 Empty rows and columns

If row i0 in (2.6) has zero entries in all positions j = 1, 2, . . . , n, it can be
removed from an LP model as well as from an LFP model too. The postsolve
operation is very simple, because the optimal basis of the transformed problem
is the optimal basis of the original problem too. We have to calculate only the
corresponding slack variable. The dual values connected to this row are equal
to zero. (yi0 = 0, pi0 = 0, qi0 = 0)

Proof: Let x∗j , v
∗
j , w

∗
j (j ∈ J) and y∗i = s∗i − q∗i (i ∈ I\i0), y∗0 be the optimal

solution of the presolved problem (without row i0) and its dual. It is obvious
that if we insert a new row to the problem which has no nonzero entries, the
optimal basis does not change. Dual constraints have to be expanded in the
following a way:
Instead of

d0y
∗
0 −

∑
i∈I\i0

bis
∗
i +

∑
i∈I\i0

biq
∗
i −

n∑
j=1

Ljw
∗
j +

n∑
j=1

Ujv
∗
j = p0

the dual model contains

d0y
∗
0 −

∑
i∈I\i0

bis
∗
i − bi0si0 +

∑
i∈I\i0

biq
∗
i + bi0qi0 −

n∑
j=1

Ljw
∗
j +

n∑
j=1

Ujv
∗
j = p0,
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and instead of

djy
∗
0 +

∑
i∈I\i0

aijy
∗
i + w∗j − v∗j = pj j = 1, 2, . . . , n

it contains

djy
∗
0 +

∑
i∈I\i0

aijy
∗
i + ai0jyi0 + w∗j − v∗j = pj j = 1, 2, . . . , n.

It is obvious that the values of qi0 and si0 are equal to zero. In case of
dual constraints (2.10) actually it does not require any changes because ai0j =
0, ∀j ∈ J .

We have to keep in mind that before deleting row i0 we have to check primal
feasibility. The problem is primal infeasible if bi0 > 0 or bi0 < 0.

It is a bit more complicated situation if a column (denoted by l) has not
nonzero entries. In case of LP we have to fix the variable xl at its upper or
lower bound depending on the sign of its coefficient in the objective function.
In case of LFP we have to determine which value is better from the point of
view of the objective function (2.5):∑

j∈J\l
pjxj + plLl + p0∑

j∈J\l
djxj + dlLl + d0

or ∑
j∈J\l

pjxj + plUl + p0∑
j∈J\l

djxj + dlUl + d0

where Ul and Ll are the individual bounds of variable xl (see: (2.7)).
Let us denote the value∑

j∈J\l

pjxj + p0 by P ′(x) and
∑
j∈J\l

djxj + d0 by D′(x).

We have to compare the following two expressions and choose the better one:

P ′(x) + plLl
D′(x) + dlLl

� P ′(x) + plUl
D′(x) + dlUl

(2.13)
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where � denotes the relational sign between the two side. (It can be > or <
since we suppose that Ll 6= Ul).

Since we supposed that D(x) > 0, ∀x ∈ S, relation (2.13) can be written in
the following form:

(P ′(x) + plLl)(D
′(x) + dlUl) � (P ′(x) + plUl)(D

′(x) + dlLl)

After simplification we obtain:

Ll(D
′(x)pl − P ′(x)dl) � Ul(D

′(x)pl − P ′(x)dl)

Since Ul > Ll relation � depends on the sign of D′(x)pl − P ′(x)dl. If it is
negative, i.e. D′(x)pl−P ′(x)dl < 0, relation � is > so we have to fix the variables
xl at its upper bound, xl = Ul. But if D′(x)pl − P ′(x)dl > 0 then � is <, so
the right way is to fix the variable at its lower bound, xl = Ll. Unfortunately,
when presolving we do not know the sign of D′(x)pl − P ′(x)dl. This is why we
have to analyze the signs of pl and dl and distinguish the cases described below
in Theorem 2.1.

Let us introduce the following expressions:

P ′(x) =
∑

j∈J\l,pj>0

pjUj +
∑

j∈J\l,pj<0

pjLj + p0

P ′(x) =
∑

j∈J\l,pj>0

pjLj +
∑

j∈J\l,pj<0

pjUj + p0

D′(x) =
∑

j∈J\l,dj>0

djUj +
∑

j∈J\l,dj<0

djLj + d0

D′(x) =
∑

j∈J\l,dj>0

djLj +
∑

j∈J\l,dj<0

djUj + d0

Theorem 2.1 Here are the following four possible cases to fix a variable (with
an empty column) in problem (2.5)-(2.7) in order to minimize the objective
value.

[1] Case pl > 0 and dl > 0

(a) If P ′(x)dl < D′(x)pl, then D′(x)pl − P ′(x)dl > 0. So we have to
choose the lower bound.
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(b) Or P ′(x)dl > D′(x)pl, then D′(x)pl − P ′(x)dl < 0. So we have to
choose the upper bound.

[2] Case pl > 0 and dl < 0

(a) If P ′(x)dl < D′(x)pl, then D′(x)pl − P ′(x)dl > 0. So we have to
choose the lower bound.

(b) Or P ′(x)dl > D′(x)pl, then D′(x)pl − P ′(x)dl < 0. So we have to
choose the upper bound.

[3] Case pl < 0 and dl > 0

(a) If P ′(x)dl < D′(x)pl, then D′(x)pl − P ′(x)dl > 0. So we have to
choose the lower bound.

(b) Or if P ′(x)dl > D′(x)pl, then D′(x)pl − P ′(x)dl < 0. So we have to
choose the upper bound.

[4] Case pl < 0 and dl < 0

(a) If P ′(x)dl < D′(x)pl, then D′(x)pl − P ′(x)dl > 0. So we have to
choose the lower bound.

(b) Or P ′(x)dl > D′(x)pl, then D′(x)pl − P ′(x)dl < 0. So we have to
choose the upper bound.

After fixing a variable in the way shown in Theorem 2.1 we obtain the
following problem

Q′(x) =

∑
j∈J\l

pjxj + p0 + Ulpl∑
j∈J\l

djxj + d0 + Uldl
→ min (2.14)

for variable xl fixed at upper bound and

Q′(x) =

∑
j∈J\l

pjxj + p0 + Llpl∑
j∈J\l

djxj + d0 + Lldl
→ min (2.15)

for variable xl fixed at lower bound. Subject to

bi ≥
∑
j∈J\l

aijxj ≥ bi

Uj ≥ xj ≥ Lj , j ∈ J\l .
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Let us suppose that problem (2.14) has the following optimal solution:
x∗j , j ∈ J\l and y∗i , i ∈ I and y∗0 denote the optimal solution of its dual.
When postsolving we have to define only the values of dual variables wl and vl
removed earlier.

This fixing of variable xl results the following changes in the dual problem:

[1] Instead of original

d0y
∗
0 −

∑
i∈I

bis
∗
i +

∑
i∈I

biq
∗
i −

∑
j∈J\l

Ljw
∗
j − Llwl +

∑
j∈J\l

Ujv
∗
j + Ulvl = p0.

we have

(d0 + Uldl)y
∗
0 −

∑
i∈I

bis
∗
i +

∑
i∈I

biq
∗
i −

∑
j∈J\l

Ljw
∗
j +

∑
j∈J\l

Ujv
∗
j = p0 + Ulpl

[2] Also constraint

dly
∗
0 +

∑
i∈I

ailyi + wl − vl = pl

was removed.

According to the complementary slackness theorem wl = 0, because its pri-
mal constraint pair, x∗l > Ll and the other variable vl = dly

∗
0 − pl. In the case

of problem (2.15) we have wl = pl − dly∗0 and vl = 0.

2.2.1.2 Singleton rows

Row i0 in (2.6) is said to be singleton if it has only one nonzero entry (let us
denote this position by l). In fact it results a new individual bound for variable
xl.

If this new bound is not stricter then the original individual bound for vari-
able xl we can remove this constraint without any other changes in the model.
In this case the constraint is redundant, i.e.

xl ≥ Ll ≥
bi0
ai0l

or xl ≤ Ul ≤
bi0
ai0l

.

Otherwise, we remove the singleton row from the problem and replace the
individual bounds of xl with L′l and U ′l . After solving the preprocessed problem
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we obtain x∗j , v
∗
j , w∗j , y∗i ,s∗i , q

∗
i as optimal values, where j ∈ J and i ∈ I\i0.

During postsolve we have to define the value of dual variable yi0 , and also si0 , qi0
and the values of vl and wl are also different from the preprocessed ones. The
following table shows how we can construct the new individual bounds for xl in
the preprocessed problem and also the rules of postsolve operation.

Individual bound in preprocessed problem Rules of postsolve

L′l =


Ll if Ll ≥

bi0
ai0l

bi0
ai0l

if Ll <
bi0
ai0l

si0 = 0

si0 =
w∗l
ai0l

wl = 0

U ′l =


Ul if Ul ≤

bi0
ai0l

bi0
ai0l

if Ul >
bi0
ai0l

qi0 = 0

qi0 =
v∗l
ai0l

vl = 0

There are some special cases. During this step of preprocessing we can detect
infeasibility or we can fix the corresponding variable.

Problem is infeasible, if:



bi0
ai0l

> Ul or

bi0
ai0l

< Ll or

bi0
ai0l

= Ul and
bi0
ai0l

= Ll but Ll 6= Ul

We can fix variable xl if:


bi0
ai0l

= Ul at its upper bound

bi0
ai0l

= Ll at its lower bound

For these special cases I defined the following postsolve operations:
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• In case of fixing at upper bound

s∗i0 =

pl − dly∗0 −
∑

i∈I\i0
aily

∗
i

ai0l
q∗i0 = 0

w∗l = 0, v∗l = 0

• In case of fixing at lower bound

q∗i0 =

−pl + dly
∗
0 +

∑
i∈I\i0

aily
∗
i

ai0l
s∗i0 = 0

v∗l = 0, w∗l = 0

2.2.1.3 Primal feasibility test

This test is exactly the same in LFP as in LP, because it does not depend on
the objective function. It is based only on the individual bounds and constraints.
Let us define

b
′
i =

∑
k∈J+

i

aikUk +
∑
k∈J−i

aikLk

b′i =
∑
k∈J+

i

aikLk +
∑
k∈J−i

aikUk

where J+
i = {j|aij > 0} and J−i = {j|aij < 0}. Uk, Lk are individual bounds

(see (2.7)).

Primal infeasibility is detected if ∃i ∈ I, where b′i > bi or b
′
i < bi.

Redundancy is detected if bi ≥ b
′
i ≥ b′i ≥ bi. In this case we simply remove

the redundant constraint, and the corresponding postsolve operation is s∗i =
0, q∗i = 0, y∗i = 0.

Variables included by row i0 can be fixed at their individual bounds if b′i0 =

bi0 or b
′
i = bi0 . The preprocessed problem does not contain row i0, variables

xj , j ∈ J+
i0
∪ J−i0 , their individual bounds and therefore the dual constraints
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connected to these variables any longer. Let us denote Ji0 = {j|ai0j 6= 0}, i.e.
Ji0 = J−i0 ∪ J

+
i0

. If Ji0 has only one item, it is exactly the case of singleton row
(see in section 2.2.1.2). Otherwise, the changes in the preprocessed problem are:

p′0 = p0 +
∑
j∈J+

pjUj +
∑
j∈J−

pjLj

d′0 = d0 +
∑
j∈J+

djUj +
∑
j∈J−

djLj

b
′
i = bi −

∑
j∈J+

aijUj −
∑
j∈J−

aijLj i ∈ I\i0

b′i = bi −
∑
j∈J+

aijUj −
∑
j∈J−

aijLj i ∈ I\i0

Optimal solution of the preprocessed problem and its dual are y∗0 , s
∗
i , q
∗
i , w

∗
j , v
∗
j

and y∗i , i ∈ I\i0, j ∈ J\Ji0 .

During postsolve we define dual variables in the following way: y∗i0 = s∗i0 =
q∗i0 = 0.

• In case of b
′
i0 = bi0 :

wj = 0 and vj = djy
∗
0 +

∑
i∈I\i0

aijy
∗
i − pj if j ∈ J+

i0
(2.16)

vj = 0 and wj = −djy∗0 −
∑
i∈I\i0

aijy
∗
i + pj if j ∈ J−i0 (2.17)

• In case of b′i0 = bi0

vj = 0 and wj = −djy∗0 −
∑
i∈I\i0

aijy
∗
i + pj if j ∈ J+

i0
(2.18)

wj = 0 and vj = djy
∗
0 +

∑
i∈I\i0

aijy
∗
i − pj if j ∈ J−i0 (2.19)

2.2.1.4 Cheap dual test

Using cheap dual test we can remove further columns from the model. I use
the cases (1-4) and subcases signed by (a) and (b) from Theorem 2.1 in order
to remove column l as follows:
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If any subcase signed by (a) is true and

{
bi = +∞ if ail < 0

bi = −∞ if ail > 0
i ∈ I,

variable xl can be fixed at its lower bound.

If any subcase signed by (b) is true and

{
bi = +∞ if ail > 0

bi = −∞ if ail < 0
i ∈ I.

we fix variable xl at its upper bound.
In these cases rows with nonzeros in position l can be removed from the

original problem and the corresponding postsolve operations are similar to that
in primal feasibility test. The dual variable for the rows removed will be y∗i =
0, i ∈ Ij , where Ij = {i ∈ I|ail 6= 0}. In case of fixing variable xl at its upper
bound formula (2.16) is used. In case of lower bound formula (2.17) defines how
to calculate w∗l and v∗l .

It may happen that the appropriate bound is not finite, then the problem is
dual infeasible, because the primal objective function is not finite on the feasible
set.

There is a special case when the appropriate bound of xl is not finite but
coefficients pl and dl are zeros. In this case the constraints which have nonzero
entry in position l can be removed and the value of variable xl is undefined.

2.2.1.5 Duplicate rows

If there are such two rows (row i and k) in (2.6) that aij = αakj ,∀j ∈ J and
i 6= k then rows i and k are identical up to a scalar multiplier α. Depending on
bounds primal infeasibility or redundancy can be detected.

Infeasibility is detected if bi <
bk
α

or
bk
α
< bi.

Otherwise redundancy is detected, and a new row i0 is need to be created
instead of the two original rows i and k by tightening bounds in the following
way:

bi0 = max{bi ;
bk
α
}

bi0 = min{bi ;
bk
α
}
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Postsolve in this situation is obvious. We have to define the following dual
variables yi = si − qi and yk = sk − qk using the following formulas:

• s∗i = s∗i0 and s∗k = 0 if bi0 = bi,

• s∗k = s∗i0 and s∗i = 0 otherwise.

• q∗i = q∗i0 and q∗k = 0 if bi0 = bi,

• q∗k = q∗i0 and q∗i = 0 otherwise.

where s∗i0 and q∗i0 are the optimal dual values of the new row i0.

2.2.1.6 Presolve Linear-Fractional or Linear Analogue Problem

In this section I show the differences between presolving an LFP problem and
its Linear Analogue (LA) form obtained by Charles and Cooper transformation
[11]. I reveal the reasons why it is more efficient to presolve the original form of
an LFP problem (before transformation) instead of presolve the LA form after
transformation.

First, let us consider the linear analogue form of LFP problem (2.5)-(2.7):

C(t) =

n∑
j=0

pjtj → min (2.20)

subject to

n∑
j=1

aijtj − bit0 ≤ 0 i ∈ I

0 ≤
n∑
j=1

aijtj − bit0 i ∈ I
(2.21)

tj − Ujt0 ≤ 0 j ∈ J
0 ≤ tj − Ljt0 j ∈ J (2.22)

n∑
j=0

djtj = 1 (2.23)

where index set I = {1, 2, . . . ,m}, J = {1, 2, . . . , n} and tj =
xj
D(x)

, j =

1, 2, . . . , n, t0 =
1

D(x)
. Since we supposed in (2.5)-(2.7) that D(x) > 0 here
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t0 > 0, which can be rewritten as t0 ≥ 0, since (2.22) and (2.23) exclude the
case t0 = 0. Hence, LA model can be extended with an individual bound for t0:

0 ≤ t0 (2.24)

Here I examine the presolve operations (discussed in section 2.2.1) one by
one and show the differences between the two cases: presolve before or after
transformation o demonstrate the advantages of LFP presolve relative to LP
presolve on LA model.

First suppose LFP problem (2.5)-(2.7) has an ”empty row” indexed by i0
(i.e. ai0j = 0, j = 1, 2, . . . , n). As I mentioned above, this row can be removed
form the model. Now, let us see what happens if we transform such a model into
LA form and after that try to apply presolve operations to LA. It is obvious the
empty row does not affect the objective function (2.20) and constraints (2.22),
(2.23) and (2.24) in LA form. Row i0 results the following constraints instead
of (2.21) in linear analogue model:

n∑
j=1

aijtj − bit0 ≤ 0 i ∈ I\i0

0 ≤
n∑
j=1

aijtj − bit0 i ∈ I\i0

−bi0t0 ≤ 0
0 ≤ −bi0t0

We can see row i0 is not an empty, but a singleton row in LA model. Con-
straints −bi0t0 ≤ 0 and 0 ≤ −bi0t0 are redundant because of (2.24), and they
can be removed from the model unless primal infeasibility is detected. As we
mentioned in subsection 2.2.1.1 if bi0 < 0 or bi0 > 0 the model is primal infea-
sible. So we see that in case of LFP ”empty row” test simply removes row i0,
while in LA model we have to apply ”singleton row” test.

According to ”empty column” test a variable (xl) with zero coefficients
in all constraints (2.6) can be fixed at its lower or upper bound if it fulfills one
of the conditions in theorem 2.1. As individual bound restrictions (2.7) of LFP
became two-variable constraints in LP (2.22) since there appear some more con-
straint coefficients of the corresponding variable (2.22), (2.23). Considering the
constraint matrix of LA model we can see variable xl is not associated with an
empty column. Hence, if we do not remove an empty column (j0) which satisfies
one of the conditions in theorem 2.1 from LFP model before transformation, in
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LA model will not be any chance for it, because column j0 in LA model is no
longer an empty column.

Case of ”singleton rows” is quite similar: When transforming an LFP
model with a singleton row (i0, where ai0j = 0, ∀j ∈ J\l and ai0l 6= 0) into LA
form, row i0 became a constraint as follows:

bi0 ≤
∑
j∈J\l

ai0jxj︸ ︷︷ ︸
0

+ai0lxl ≤ bi0 →



∑
j∈J\l

ai0jtj︸ ︷︷ ︸
0

+ai0tl − bi0t0 ≤ 0

−
∑
j∈J\l

ai0jtj︸ ︷︷ ︸
0

+ai0tl + bi0t0 ≤ 0

A(LFP ) =


...

...
...

...
...

...
...

0 . . . 0 ai0l 0 . . . 0
...

...
...

...
...

...
...


↓

A(LA) =


...

...
...

...
...

...
...

...

0 . . . 0 ai0l 0 . . . 0 {−bi0 | bi0}
...

...
...

...
...

...
...

...


After Charnes-Cooper transformation of LFP model in row i0 of LA model

appears a constraint with two nonzero coefficients. Presolve operations men-
tioned above can not reduce such a model.

As LA model (2.20)-(2.24) has bound restriction only for variable t0 the
”primal feasibility” test can be used only in some special cases when con-
straints contain only the variable t0. This kind of constraints appear if the
transformed LFP model has an empty row as we examined above.

Considering the ”cheap dual” test we can realize that if variable xj in
LFP problem (2.5)-(2.7) satisfies the conditions in section 2.2.1.4 then the cor-
responding tj in LA satisfies constraints (2.21). However constraints (2.22) also
contain variable tj and therefore conditions of cheap dual test are not fulfilled
for all constraints of LA model.
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The last presolve operation considered in section 2.2.1 was the ”duplicate
rows” which may be formulated as follows: If coefficients of row k can be
obtained by a simple multiplication of coefficients in constraint i, i.e.:

Row i :
n∑
j=1

aijxj ≤ bi

Row k :
n∑
j=1

αaij︸︷︷︸
akj

xj ≤ bk
→

Row i′ :
n∑
j=1

aijtj − bit0 ≤ 0

Row k′ :
n∑
j=1

αaij︸︷︷︸
akj

tj − bkt0 ≤ 0,

row i and k in LFP model can be simplified as redundant constraints (unless
primal infeasibility is detected), but row i′ and k′ in LA model are linearly
independent rows, so LA model can not be reduced (except if bi = αbk).

2.2.2 Scaling

Solving a large-scale problem requires hundreds of thousands to millions of
floating-point arithmetic operations. Because of the finite precision inherent
in computer arithmetic small numerical errors occur during these calculations.
These errors typically have a cumulative effect, which often leads to a numeri-
cally unstable problem and possibly large errors in the ”solution” obtained.

To avoid such problems all well-made industrial solvers include special so-
phisticated techniques that dramatically reduce the cumulative effect of round-
ing and often lead to considerable improvement in the solvers’ performance.
One of the most simple, relatively effective and widespread techniques of this
type is scaling. This is a well-defined transformation of the constraint-matrix
A that attempts to make the magnitudes of the data as close to each other
as possible. That means those rows or columns of matrix A which are badly
scaled must be transformed with their own scale factors ρ. The main difference
between several scaling algorithms is the factor-defining method. In most cases
scaling improves the numerical characteristics of a problem and sometimes it
can also reduces the number of iterations needed during the simplex method.

Most professionally developed solvers automatically use scaling methods to
maintain numerical stability and improve the performance. Normally, we can
choose among such options as: ”No Scaling”, ”Row Scaling”, ”Column Scaling”,
or ”Row and Column Scaling” with or without scaling the objective function.
For instance the well-known CPLEX optimizer lets us to set the so called scale
parameter (CPX PARAM SCAIND) which can get three different values:

LINGO also provides us the opportunity to set scaling on or off:
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Value Meaning
−1 No scaling

0 Equilibration scaling (default)
1 More aggressive scaling

Table 2.2: Scaling settings in CPLEX

Figure 2.3: LINGO scaling settings

In this section I present our adaptation of scaling techniques into LFP. The
section mainly consists of the following two part.

In the first one I show our investigations connected with differences and
connections between the optimal solution of the original problem and that of
the scaled problem in case of LFP, and present the re-scaling operation needed
to obtain the optimal solution of the original problem from the optimal solution
of the scaled problem.

In the second part I briefly overview three different rules for calculating
scaling factors, and illustrate with a numerical example how these methods
work. It is also considered how can they improve the σ(A) see (2.4). The first
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two rules have been implemented in the linear programming codes developed
at Edinburgh University, Department of Mathematics and Statistics, Scotland.
The third rule has been developed by me.

Finally, I compare my new scaling rule to the two other by conducting several
computational test.

2.2.2.1 Theoretical background

Before turning our attention to the scaling methods, I briefly overview what
kind of changes arise from scaling transformations. Let us consider the following
canonical LFP problem:

Q(x) =
P (x)

D(x)
=

n∑
j=1

pjxj + p0

n∑
j=1

djxj + d0

→ max (2.25)

subject to
n∑
j=1

aijxj = bi, i = 1, 2, . . . ,m, (2.26)

xj ≥ 0, j = 1, 2, . . . , n, (2.27)

where D(x) > 0, ∀x = (x1, x2, . . . , xn)T ∈ S, S - is a feasible set defined by
constraints (2.26) and (2.27).

Scaling may include coefficients of the objective function. In case of LP prob-
lems scaling a constraint matrix A, a right-hand-side vector b or an objective
function P (x) does not lead to any difficulties because of linearity of constraints
and objective function.

In case of scaling LFP problems we distinguish the following cases:

I. Scaling constraints:

• right-hand side vector b = (b1, b2, . . . , bm)T ;

• columns Aj (j = 1, 2, . . . , n) of matrix A;

• rows of matrix A;

II. Scaling objective function:

• only the vector p = (p0, p1, p2, . . . , pn) connected to numerator P (x);
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• only the vector d = (d0, d1, d2, . . . , dn) connected to denominator
D(x);

• both vectors p and d that define the objective function Q(x).

Below we investigate all these possible cases.

Case 1 Right-hand side column-vector

Suppose that vector x∗ is an optimal solution for LFP problem (2.25)-(2.27),
so

n∑
j=1

Ajx
∗
j = b and x∗ ≥ 0,

and matrix B = (As1 , As2 , . . . , Asm) is its basis.

Let us replace RHS vector b with some other vector b′ = ρ b, where ρ > 0.
Consider the new vector x′ = ρx∗. It is obvious that this vector x′ satisfies the
constraints:

n∑
j=1

Aj(ρx
∗
j ) = ρ b and x′ = ρx∗ ≥ 0,

so vector x′ is a feasible solution of LFP problem

Q(x) =
P (x)

D(x)
=

n∑
j=1

pjxj + p ′0

n∑
j=1

djxj + d ′0

→ max (2.28)

subject to
n∑
j=1

aijxj = ρbi, i = 1, 2, . . . ,m; (2.29)

xj ≥ 0, j = 1, 2, . . . , n. (2.30)

Now we have to check vector x′ whether it is an optimal solution of problem
(2.28)-(2.30). Since vector x∗ is an optimal solution of the original LFP problem
(2.25)-(2.27) it means that

∆j(x
∗) ≥ 0, j = 1, 2, . . . , n, (2.31)
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where

∆j(x
∗) = D(x∗)∆′j − P (x∗)∆′′j , j = 1, 2, . . . , n,

∆′j =

m∑
i=1

psixij − pj , j = 1, 2, . . . , n,

∆′′j =

m∑
i=1

dsixij − dj , j = 1, 2, . . . , n,

coefficient xij are defined by the systems

m∑
i=1

Asixij = Aj , j = 1, 2, . . . , n; (2.32)

where Aj denotes the column-vectors Aj = (a1j , a2j , . . . , amj)
T , j = 1, 2, . . . , n,

of matrix A = ‖aij‖m×n.
Observe that reduced costs ∆′j and ∆′′j do not depend on RHS vector b, so

substitution b → ρ b does not affect values of ∆′j and ∆′′j . However, values of
functions P (x) and D(x) depend on RHS vector b, so we have to consider the
new reduced costs ∆j(x

′), where x′ = ρx∗, for LFP problem (2.28)-(2.30). We
have

∆j(ρx
∗) = D(ρx∗) ∆′j − P (ρx∗) ∆′′j =

= (

n∑
j=1

dj(ρx
∗
j ) + d ′0) ∆′j − (

n∑
j=1

pj(ρx
∗
j ) + p ′0) ∆′′j =

= (

n∑
j=1

dj(ρx
∗
j ) + d ′0 + ρd0 − ρd0) ∆′j −

−(

n∑
j=1

pj(ρx
∗
j ) + p ′0 + ρp0 − ρp0) ∆′′j =

= ρD(x∗) ∆′j + (d ′0 − ρd0) ∆′j − ρP (x∗) ∆′′j − (p ′0 − ρp0) ∆′′j =

= ρ∆j(x
∗) + (d ′0 − ρd0) ∆′j − (p ′0 − ρp0) ∆′′j =

= ρ∆j(x
∗)−Gj , (2.33)

where
Gj = (p ′0 − ρp0) ∆′′j − (d ′0 − ρd0) ∆′j .
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Formula (2.33) means that if p ′0 and d ′0 are such that

ρ∆j(x
∗)−Gj ≥ 0, j = 1, 2, . . . , n,

or, in particular, if p ′0 = ρp0 and d ′0 = ρd0, then

∆j(ρx
∗)

(2.33)
= ρ∆j(x

∗)
(2.31)

≥ 0, ∀j = 1, 2, . . . , n,

and hence, vector x′ is an optimal solution of LFP problem (2.28)-(2.30).
So, if we substitute RHS vector b with some other vector b ′ = ρb, ρ > 0, we

have simultaneously to replace coefficients p0 and d0 in the original objective
function Q(x) with p ′0 = ρp0 and d ′0 = ρd0, respectively. These two
substitutions will guarantee the equivalency between the original problem (2.25)-
(2.27) and the new scaled LFP problem (2.28)-(2.30).

It is obvious that if vector x ′ is an optimal solution of the new (scaled)
LFP problem (2.28)-(2.30), then vector x∗ = x ′/ρ is an optimal solution of the
original LFP problem (2.25)-(2.27).

Case 2 Left-hand side column-vectors

In this case we scale columns Aj , j = 1, 2, . . . , n, of matrix A = ‖aij‖m×n.
We suppose that vector x∗ is an optimal solution for the original LFP problem
(2.25)-(2.27), so

n∑
j=1

Aj x
∗
j = b and x∗j ≥ 0, j = 1, 2, . . . , n,

and matrix B = (As1 , As2 , . . . , Asm) is its basis.
Let us replace vector Ar, r ∈ J = {1, 2, . . . , n}, with some other vector

A′r = ρAr, where ρ > 0. It is obvious that, the new vector

x′ = (x∗1, x
∗
2, . . . , x

∗
r−1,

x∗r
ρ
, x∗r+1, . . . , x

∗
n)

will satisfy constraints
n∑

j=1

j 6=r

Ajx
∗
j + ρAr

x∗r
ρ

= b,

x′j ≥ 0, j = 1, 2, . . . , n,
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and hence vector x′ is a feasible solution of the new scaled LFP problem

Q(x) =
P ′(x)

D′(x)
=

n∑
j=1

j 6=r

pjxj + p′rxr + p0

n∑
j=1

j 6=r

djxj + d′rxr + d0

→ max (2.34)

subject to
n∑

j=1

j 6=r

Ajxj +A′rxr = b, (2.35)

xj ≥ 0, j = 1, 2, . . . , n. (2.36)

Our aim is now to detect whether vector x′ is an optimal solution of the
scaled LFP problem (2.34)-(2.36). Since vector x∗ is an optimal solution of the
original problem (2.25)-(2.27), we have that

∆j(x
∗) = D(x∗)∆′j − P (x∗)∆′′j ≥ 0, j = 1, 2, . . . , n. (2.37)

Here we have to distinguish the following two cases: Ar is a basic vector,
and vector Ar is a non-basic vector.

Let us suppose that Ar is a basic vector, i.e. r ∈ JB = {s1, s2, . . . , sm}. In
this case, keeping in mind that

P ′(x′) =

n∑
j=1

j 6=r

pjx
∗
j + p′r

x∗r
ρ

+ p0 , D′(x′) =

n∑
j=1

j 6=r

djx
∗
j + d′r

x∗r
ρ

+ d0 ,

∆′j =

m∑
i=1

si 6=r

psixij + p′r
xrj
ρ
− pj , ∆′′j =

m∑
i=1

si 6=r

dsixij + d′r
xrj
ρ
− dj ,

for the new scaled problem (2.34)-(2.36) we have

∆j(x
′) = D′(x′)∆′j − P ′(x′)∆′′j =

= (D(x∗)− drx∗r + d′r
x∗r
ρ

)(∆′j − prxrj + p′r
xrj
ρ

)−

− (P (x∗)− prx∗r + p′r
x∗r
ρ

)(∆′′j − drxrj + d′r
xrj
ρ

) (2.38)
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Equation (2.38) makes it obvious that if p′r = prρ and d′r = drρ, then

∆j(x
′)

(2.38)
= ∆j(x

∗)
(2.37)

≥ 0, j = 1, 2, . . . , n.

The latter means that in this case vector x′ is an optimal solution of the scaled
LFP problem (2.34)-(2.36). So, if we substitute some basic vector Ar with some
other vector A′r = ρ Ar, ρ > 0, we simultaneously have to replace coefficients
pr and dr in the original objective function Q(x) with p′r = ρpr and d′r = ρdr,
respectively. These two substitutions will guarantee the equivalency between the
original problem (2.25)-(2.27) and the new scaled LFP problem (2.34)-(2.36).

It is obvious that if vector x′ is an optimal solution of the new (scaled) LFP
problem (2.34)-(2.36), then vector x∗ = (x′1, x

′
2, . . . , x

′
r−1, x

′
rρ, x

′
r+1, . . . , x

′
n)

will be an optimal solution of the original LFP problem (2.25)-(2.27).
Now, we have to consider the case when substituted vector Ar is a non-basic

vector, i.e. r ∈ JN = J \JB . As in the previous case, we simultaneously replace
original coefficients pr and dr with ρpr and ρdr, respectively. Since index r is
non-basic and x∗r = 0, it is obvious that

x′ = x∗, P ′(x′) = P (x∗), D′(x′) = D(x∗) and hence Q′(x′) = Q(x∗).

So replacement Ar → ρAr, r ∈ JN , affects only values of ∆′r, ∆′′r , and
∆r(x

′). Indeed, if in the original LFP problem (2.25)-(2.27) for non-basic vector
Ar we had (see (2.32)), that

m∑
i=1

Asixir = Ar, r ∈ JN ,

then after replacement Ar → A′r, where A′r = ρAr, we obtain the following
representation of the new vector A′r in the same basis B:

m∑
i=1

Asi(ρxir) = ρAr, r ∈ JN .

If in case of replacing Ar → ρAr, we simultaneously substitute pr → p′r, where
p′r = ρpr, and dr → d′r, where d′r = ρdr, then for new ∆̃′r, ∆̃′′r , and ∆̃r(x

′)
we have

∆̃′r =

m∑
i=1

psi (ρxir)− (ρpr) = ρ∆′r,

∆̃′′r =

m∑
i=1

dsi (ρxir)− (ρdr) = ρ∆′′r .
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Thus,
∆̃r(x

′) = D(x∗) ∆̃′r − P (x∗) ∆̃′′r
= D(x∗) (ρ∆′r)− P (x∗) (ρ∆′′r )

= ρ∆r(x
∗)

(2.37)

≥ 0.

The latter means that in this case vector x∗ is an optimal solution of the scaled
LFP problem (2.34)-(2.36).

So, if we substitute some non-basic vector Ar with some other vector A′r =
ρ Ar, ρ > 0, we have simultaneously to replace coefficients pr and dr in the
original objective function Q(x) with p′r = ρpr and d′r = ρdr, respectively.
These two substitutions will guarantee the equivalency between the original
problem (2.25)-(2.27) and the new scaled LFP problem (2.34)-(2.36). Moreover,
it will guarantee that x∗r = x′r = 0.

Case 3 Rows of constraints

Let us replace row-vector ar = (ar1, ar2, . . . , arn) of matrix A = ||aij ||m×n
in LFP problem (2.25)-(2.27) with some other row-vector a′r = ρar. If we
simultaneously with replacement ar → ρar substitute the r-th element of RHS
vector b, i.e. br → b′r = ρbr, we obtain instead of the original constraint in the
r-th row

n∑
j=1

arjxj = br, we have

n∑
j=1

(ρarj)xj = (ρbr).

It is well-known that such scaling does not affect the structure of feasible set
S. So the new scaled problem is absolutely equivalent with the original one.

It is obvious, if we do not modify RHS vector b, it leads to unpredictable
deformations in feasible set S, so we cannot provide any guarantee that the
optimal basis of the scaled problem will be the same as in the original one. So,
the only negotiable method of scaling rows in matrix A is the following ãr → ã′r
where ãr = (ar1, ar2, . . . , arn, br) and ã′r = (ρar1, ρar2, . . . , ρarn, ρbr).

Obviously, the optimal solution x′ of the scaled LFP problem is absolutely
identical with the optimal solution x∗ of the original LFP problem. So we need
not any postsolve operation in this case.

Note that in the simplex method, when performing θ-ratio test, the elements
of the pivotal column take part in the calculations. Hence, the choice of pivotal
row depends on the row scaling. Since a bad choice of pivots can lead to large
errors in the computed solution, it means that a proper row scaling is very
important.
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Case 4 Objective function - Numerator P (x)

Let us replace the coefficient vector p = (p0, p1, . . . , pn) in the numera-
tor P (x) with some other vector p′ = (p′0, p

′
1, . . . , p

′
n), where p′j = ρpj , j =

0, 1, 2, . . . , n.
It is clear that this replacement does not affect either the optimal value of

denominator D(x) or the values of reduced costs ∆′′j , j = 1, 2, . . . , n, but it
changes the optimal values of functions P (x) and Q(x), and in this way affects
the values of reduced costs ∆′j and ∆j(x), j = 1, 2, . . . , n.

So, for the new values ∆̃′j , P ′(x∗), Q′(x∗), and ∆̃j(x
∗), j = 1, 2, . . . , n,

we have:

∆̃′j =

m∑
i=1

p′sixij − p
′
j =

m∑
i=1

(ρ psi)xij − (ρ pj) = ρ∆′j , j = 1, 2, . . . , n,

P ′(x∗) =

n∑
j=1

p′jx
∗
j + p′0 =

n∑
j=1

(ρ pj)x
∗
j + (ρ p0) = ρ P (x∗),

Q′(x∗) = P ′(x∗)/D(x∗) = ρ P (x∗)/D(x∗) = ρ Q(x∗),

and hence,

∆̃j(x
∗) = D(x∗)∆̃′j − P ′(x∗)∆′′j =

= D(x∗)(ρ∆′j)− (ρ P (x∗))∆′′j = ρ∆j(x
∗), j = 1, 2, . . . , n.

Since ρ > 0 and ∆j(x
∗) ≥ 0, j = 1, 2, . . . , n, the latter means that

∆̃j(x
∗) = ρ∆j(x

∗)
(2.37)

≥ 0, j = 1, 2, . . . , n.

Finally, we have to note that replacement p → ρp does not lead to any changes
in the optimal basis or in optimal solution x∗. So, if we have solved the scaled
LFP problem, in order to ”un-scale” the optimal solution obtained we have to

use the following formula Q(x∗) =
1

ρ
Q′(x∗), because the optimal solution x′

of the scaled problem is exactly the same as optimal solution x∗ of the original
problem.

Case 5 Objective function - Denominator D(x)
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Let us replace vector d = (d0, d1, . . . , dn) in the denominator D(x) with
another vector d′ = (d′0, d

′
1, . . . , d

′
n), where d′j = ρdj , j = 0, 1, . . . , n.

It is obvious that such replacement leads to some changes in the optimal val-
ues of denominator D(x), objective function Q(x) and values ∆′′j , ∆j(x), j =
1, 2, . . . , n; but does not affect the optimal value of numerator P (x) or the values
of reduced costs ∆′j , j = 1, 2, . . . , n.

So, for new values ∆̃′′j , D
′(x∗), Q′(x∗), and ∆̃j(x

∗), j = 1, 2, . . . , n, we
have

∆̃′′j =

m∑
i=1

d′sixij − d
′
j =

m∑
i=1

(ρ dsi)xij − (ρ dj) = ρ∆′′j , j = 1, 2, . . . , n,

D′(x∗) =

n∑
j=1

d′jx
∗
j + d′0 =

n∑
j=1

(ρ dj)x
∗
j + (ρ d0) = ρ D(x∗),

Q′(x∗) = P (x∗)/D′(x∗) = P (x∗)/(ρ D(x∗)) = Q(x∗)/ρ,

and hence,

∆̃j(x
∗) = D′(x∗)∆′j − P (x∗)∆̃′′j =

= (ρ D(x∗))∆′j − P (x∗)(ρ∆′′j ) = ρ∆j(x
∗), j = 1, 2, . . . , n.

Thus, we obtain

∆̃j(x
∗) = ρ∆j(x

∗)
(2.37)

≥ 0, j = 1, 2, . . . , n.

Finally, we have to note that replacement d → ρd does not lead to any changes
in optimal basis B or in optimal solution x∗. So once we have solved the scaled
LFP problem, in order to postsolve the optimal solution obtained we have to
use the following formula Q(x∗) = ρ Q′(x∗), because the optimal solution x′

of the scaled problem is exactly the same as optimal solution x∗ of the original
problem.

2.2.2.2 Geometric rule

In accordance with this rule we define the following column-vector ρr as
scaling factors for rows

ρr = (ρr1, ρ
r
2, . . . , ρ

r
m)T , (2.39)
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where
ρri = (

∏
j∈J+

i

aij)
1/Kr

i , i = 1, 2, . . . ,m;

J+
i = {j : aij 6= 0}, i = 1, 2, . . . ,m, is a row related set of indices j of non-zero

entries aij in row i, and Kr
i denotes the number of non-zero entries aij in row i.

Analogically, to scale columns we use the following factors organized in a
row-vector ρc

ρc = (ρc1, ρ
c
2, . . . , ρ

c
n), (2.40)

where
ρcj = (

∏
i∈I+j

aij)
1/Kc

j , j = 1, 2, . . . , n;

I+
j = {i : aij 6= 0}, j = 1, 2, . . . , n, is a column related set of indices i of non-

zero entries aij in column j, and Kc
j denotes the number of non-zero entries aij

in column j.

2.2.2.3 Mean rule

As an alternative to the scaling factors calculated in accordance with Ge-
ometric rule, the Mean rule defines the following column-vector ρr as scaling
factors for rows

ρr = (ρr1, ρ
r
2, . . . , ρ

r
m)T , (2.41)

where
ρri =

√
r′i r
′′
i , i = 1, 2, . . . ,m;

and
r′i = max

j: aij 6=0
|aij |, r′′i = min

j: aij 6=0
|aij |, i = 1, 2, . . . ,m.

Analogically to row scaling factors, for columns we have to define the fol-
lowing row-vector ρc as scaling factors

ρc = (ρc1, ρ
c
2, . . . , ρ

c
n), (2.42)

where
ρcj =

√
c′j c
′′
j , j = 1, 2, . . . , n;

and
c′j = max

i: aij 6=0
|aij |, c′′j = min

i: aij 6=0
|aij |, j = 1, 2, . . . , n.



2.2. PREPROCESSING IN LFP 35

2.2.2.4 Min-Max rule

As an alternative to the previous two scaling rules I introduce my new
method for calculating scaling factors. First, define the smallest ai0j0 and the
largest ai1j1 absolute values for non-zero entries in the matrix and then calculate
the following four scaling factors:

ρ′c – for column j0 containing the minimal value,
ρ′′c – for column j1 containing the maximal value,

ρ′r – for row i0 containing the minimal value,
ρ′′r – for row i1 containing the maximal value,

using the following formulas:

ρ′c =
max
i
|aij0 |+ ai1j1

2×max
i
|aij0 |

, ρ′′c =

min
i: aij 6=0

|aij1 |+ ai0j0

2× min
i: aij 6=0

|aij1 |
,

ρ′r =

max
j
|ai0j |+ ai1j1

2×max
j
|ai0j |

, ρ′′r =

min
j: aij 6=0

|ai1j |+ ai0j0

2× min
j: aij 6=0

|ai1j |
.

It is obvious that when applying such scaling factors the ’distance’ between the
largest and the smallest absolute values in the matrix decreases.

In case of large problems searching the maximum and minimum element
of the matrix in each iteration which modifies only one row/column may be
a computationally very expensive operation. Therefore I suggest the following
modification in case of scaling large problems in order to calculate a factor for
each row/column in an iteration.

ρr
′

i =

max
j
|aij |+ ai1j1

2×max
j
|aij |

, ρr
′′

i =

min
j: aij 6=0

|aij |+ ai0j0

2× min
j: aij 6=0

|aij |
,

ρc
′

j =
max
i
|aij |+ ai1j1

2×max
i
|aij |

, ρc
′′

j =

min
i: aij 6=0

|aij |+ ai0j0

2× min
i: aij 6=0

|aij |
,

where ρr
′

i and ρr
′′

i are factors for row i and ρc
′

j and ρc
′

j are factor for column
j. I permute these factors during the iterations.
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2.2.2.5 Numerical example for scaling methods

All three rules are suitable to be used for automatic scaling in programming
packages and allow relatively easy achievement of a well-scaled problem.

To illustrate how these scaling factors work, we consider the following rect-
angular matrix of size 7× 5:

A =



0.0005 3.000 0.340 234.000 34.000
2.0000 4.000 345.000 1234.000 234.000

30000.0000 5.000 4565643.000 34.000 234.000
9.0000 6.000 0.001 567.000 4.000

567.0000 7.000 234.000 24.000 234.000
56.0000 8.000 345.000 0.001 3.000

45000.0000 9.000 4.000 3.000 123.000


. (2.43)

This matrix can be said to be badly scaled since

max
i,j∈J+

(|aij |) = a33 = 4565643.000 = 4.565643E + 06,

min
i,j∈J+

(|aij |) = a11 = 0.0005 = 5.000000E − 04;

and

σ(A) =

max
i,j∈J+

(|aij |)

min
i,j∈J+

(|aij |)
=

4.565643E + 06

5.00E − 04
= 9.13E + 09,

i.e. the magnitude between the largest and the smallest absolute values of
non-zero entries aij is of order 10 (σ(A) = 9.13E + 09 ≈ 1.0E + 10). Here
J+ = {i, j : aij 6= 0}.

1 Geometric factors

First, we apply successively Geometric rule factors for rows and columns to scale
matrix A. The results of scaling are as follows.

Original matrix: In accordance with rule (2.39) we calculate vector ρr of row
scaling factors

ρr = (1.3233, 60.2959, 1403.6460, 2.6158, 87.7940, 3.4138, 56.9257)T .

Perform row scaling.
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After 1st scaling of rows For the modified matrix we calculate σ(A) mea-
sure of scaling:

max
i,j∈J+

(|aij |) = 3.25E + 03; min
i,j∈J+

(|aij |) = 2.93E − 04;

σ(A) =
3.25E + 03

2.93E − 04
= 1.11E + 07.

Row-vector ρc of column scaling factors calculated in accordance with rule
(2.40)

ρc = (1.8606, 0.2321, 1.6591, 0.6973, 2.0014).

Perform column scaling.

After 1st scaling of columns For the modified matrix we calculate σ(A) mea-
sure of scaling:

max
i,j∈J+

(|aij |) = 1.96E + 03; min
i,j∈J+

(|aij |) = 2.03E − 04;

σ(A) =
1.96E + 03

2.03E − 04
= 9.65E + 06.

Column-vector ρr of row scaling factors will be

ρr = (1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000)T .

Moreover, rule (2.40) used to calculate new row-vector ρc of column scaling
factors gives

ρc = (1.0000, 1.0000, 1.0000, 1.0000, 1.0000).

After performing two successive scaling operations for rows and columns, we
obtain scaling factors both for rows and columns with values exactly equal to 1.
Hence, there is no reason to continue this process, since further improvement of
σ(A) for matrix A, using this rule is impossible.

So, starting from the original matrix A with σ(A) = 9.13E+ 09 we obtained
its scaled modification with σ(A) = 9.65E+06. As we can see, the improvement
of magnitude achieved is of order 4 = 10− 6.

2 Mean factors
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Now, let us apply Mean rule factors to scale the same matrix A given in
(2.43). We have the following results.

Original matrix In accordance with rule (2.41), vector ρr of row scaling fac-
tors for original matrix A is

ρr = (0.3421, 49.6790, 4777.8881, 0.7530, 63.0000, 0.5874, 367.4235)T .

Perform row scaling.

After 1st scaling of rows For modified matrix we calculate σ(A) measure of
scaling:

max
i,j∈J+

(|aij |) = 9.56E + 02; min
i,j∈J+

(|aij |) = 1.05E − 03;

σ(A) =
9.56E + 02

1.05E − 03
= 9.13E + 05.

We use rule (2.42) to calculate vector ρc of column scaling factors:

ρc = (0.4231, 0.1194, 1.1265, 1.1322, 2.2064).

Perform column scaling.

After 1st scaling of columns For the modified matrix we calculate σ(A) mea-
sure of scaling:

max
i,j∈J+

(|aij |) = 8.48E + 02; min
i,j∈J+

(|aij |) = 1.18E − 03;

σ(A) =
8.48E + 02

1.18E − 03
= 7.20E + 05.

Vector ρr of row scaling factors:

ρr = (1.4448, 1.4448, 2.3090, 0.8854, 2.6752, 0.8854, 1.4448)T .

Perform row scaling.

After 2nd scaling of rows For the modified matrix we calculate σ(A) mea-
sure of scaling:

max
i,j∈J+

(|aij |) = 7.51E + 02; min
i,j∈J+

(|aij |) = 1.33E − 03;
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σ(A) =
7.51E + 02

1.33E − 03
= 5.64E + 05.

Vector ρc of column scaling factors:

ρc = (0.7801, 0.6994, 0.8854, 1.1294, 0.5475).

Perform column scaling.

After 2nd scaling of columns For the modified matrix we calculate σ(A)
measure of scaling:

max
i,j∈J+

(|aij |) = 6.65E + 02; min
i,j∈J+

(|aij |) = 1.50E − 03;

σ(A) =
6.65E + 02

1.50E − 03
= 4.42E + 05.

Vector ρr of row scaling factors:

ρr = (1.0654, 1.0654, 1.0000, 1.0000, 1.0654, 1.0000, 1.0654)T .

Perform row scaling.

After 3rd scaling of rows For the modified matrix we calculate σ(A) mea-
sure of scaling:

max
i,j∈J+

(|aij |) = 6.65E + 02; min
i,j∈J+

(|aij |) = 1.50E − 03;

σ(A) =
6.65E + 02

1.50E − 03
= 4.42E + 05.

Vector ρc of column scaling factors:

ρc = (0.9688, 1.0000, 1.0000, 1.0000, 0.9688).

After performing multiple successive scaling operations for rows and columns,
we obtain scaling factors both for rows and columns with values close to 1.
Hence, there is no reason to continue this process, since the further improve-
ment of σ(A) for matrix A becomes more and more expensive.

So, starting from the original matrix A with σ(A) = 9.13E+ 09 we obtained
its scaled modification with σ(A) = 4.42E+05. As we can see, the improvement
of magnitude achieved is of order 5 = 10− 5.
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3 Min-Max factors

Finally, let us apply my Min-Max factors to scale the same matrix A given
in (2.43).

First, define the smallest entry a11 = 0.0005 and the largest entry a33 =
4565643.000, then in the row 1 (which contains the smallest entry) we find the
largest entry a14 = 234.00 and calculate factor ρ′r for row 1 as follows

ρ′r =

max
j
|a1j |+ a33

2×max
j
|a1j |

=
234.00 + 4565643.000

2× 234.00
= 9756.1475.

Using the factor obtained we scale row 1 and obtain the following

Row 1 = 4.8781 29268.4414 3317.0901 2282938.5 331709.000

Now, the smallest non-zero entry of the matrix is a43 = 0.001, so

σ(A) =

max
i,j∈J+

(|aij |)

min
i,j∈J+

(|aij |)
=

4.565643E + 06

1.00E − 03
= 4.565643E + 09,

Note, that in the scaled matrix the smallest entry a43 = 0.001 is in the same
column 3 as the largest entry a33 = 4565643.00, so there is no reason for scaling
this column since in this case the value for scaling factors ρ′c and ρ′′c will be
exactly 1. Indeed,

ρ′c =
max
i
|ai3|+ a33

2×max
i
|ai3|

=
a33 + a33

2× a33
= 1,

and

ρ′′c =

min
i: ai3 6=0

|ai3|+ a43

2× min
i: ai3 6=0

|ai3|
=

a43 + a43

2× a43
= 1.

This is why in the next scaling operation we have to scale a row. Arbitrarily,
we choose the row of the largest entry and calculate the following factor

ρ′′r =

min
j: a3j 6=0

|a3j |+ a43

2× min
j: a3j 6=0

|a3j |
=

a32 + a43

2× a32
=

5.00 + 0.001

2× 5.00
= 0.5001
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Performing the scaling we obtain

Row 3 = 15003.0000 2.5005 2283278.0643 17.0034 117.0234

and new value for the measure of ill-scaling

σ(A) =

max
i,j∈J+

(|aij |)

min
i,j∈J+

(|aij |)
=

2283278.0643

0.0010
= 2.28328E + 09,

so the matrix obtained is as follows

A =



4.8781 29268.4414 3317.0901 2282938.5 331709.000
2.0000 4.000 345.000 1234.000 234.000

15003.0000 2.5005 2283278.0643 17.0034 117.0234
9.0000 6.000 0.001 567.000 4.000

567.0000 7.000 234.000 24.000 234.000
56.0000 8.000 345.000 0.001 3.000

45000.0000 9.000 4.000 3.000 123.000


.

Note, that the largest and the smallest entries of the matrix are in the same
column, so in the next scaling operation we have to scale a row. After performing
9 such scaling operations we obtain a matrix with σ(A) = 4.92E + 05.

Observe, that when using this scaling rule in each step we scale only one row
or column, so the rule is not so expensive as the previous two scaling rules.
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2.2.2.6 Implementation issues

To scale an LFP problem we have to calculate and then to store scaling
factors for rows, columns and objective function (separately for numerator and
denominator). One of the possible ways to store factors is to expand the matrix
of the problem as follows

Ã =



ρr1 a11 a12 . . . a1n b1
ρr2 a21 a22 . . . a2n b2
...

...
... . . .

...
...

ρrm am1 am2 . . . amn bn
ρrm+1 p1 p2 . . . pn p0

ρrm+2 d1 d2 . . . dn d0

ρc1 ρc2 . . . ρcn ρcn+1


.

During the calculation of Geometric factors ((2.39) and (2.40)) I experienced
that overflow had appeared in case of large scale matrices. The reason is the lot
of multiplication before the Kth root in formula (2.39) and (2.40). Therefore I
propose the following algorithm for calculating Geometric factors:

Initialization;
ρi0r := 1;
K := 0;
Determine the number of nonzeros;
for j:=1 to n do
begin

if ai0j 6= 0 then
K := K+1;

end

end
Calculate the factor ;
for j:=1 to n do
begin

if ai0j 6= 0 then
ρi0r := ρi0r * (ai0j)

1/K ;
end

end
Algorithm 1: Calculating Geometric factor for row i0 of matrix ||aij ||mxn
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We have to note that instead of precisely calculated values of scaling factors
ρ several linear programming codes usually use the nearest powers of two as a
”binary approximation” of these values. The reason is that for computers based
on the binary system, it may dramatically improve the performance of scaling
since in this case the relatively expensive operation of multiplication may be
implemented as very fast shifting of data to the left or right, depending on the
power of 2 used for such ”approximation”.

If we scale rows and columns multiple times we have to accumulate scaling
factors for post-optimization un-scaling as shown in the following algorithm:

Initialization;
for i:=1 to m+2 do
ρri := 1.0;
for j:=1 to n+1 do
ρcj := 1.0;

Repeat scaling several times;
repeat

Scaling rows;
for i:=1 to m+2 do
begin

temp := get row factor(i) ; /* Calculate row factors */

ρri := ρri *temp ; /* Update factor */

scale row(i, temp) ; /* Row scaling */

end
Scaling columns;
for j:=1 to n+1 do
begin

temp := get col factor(j) ; /* Calculate column factors */

ρcj := ρcj*temp ; /* Update factor */

scale row(i, temp) ; /* Column scaling */

end

until Termination condition;
Algorithm 2: Scaling a LFP problem
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2.2.2.7 Test results and comparison

In this section I present computational results produced by my test code
developed in C++. For this performance evaluation I used 69 test problems
from NETLIB collection. According to algorithm (2) I implemented scaling
rules with the following Termination condition : σ(A) ≥ SIGMA LIMIT .
Defining SIGMA LIMIT as 103 I experienced that the rules tested reach this
value not in every case:

• Mean rule reached the 103 SIGMA LIMIT in case of 78 percent of test
problems.

• Min-Max rule reached the 103 SIGMA LIMIT in case of 78 percent of
test problems.

• Geometric rule reached the 103 SIGMA LIMIT in case of 33 percent of
test problems.

There were problems on which methods can not reach the 103 in value of
σ(A), because the factors converge into one so the σ(A) decreases even less in
every iteration until it fixed at a particular value. I performed the code with ter-
mination condition containing a higher 104 and 105 value for SIGMA LIMIT
in these cases.

The following tableaus specify names, dimensions and initial σ(A) value of
NETLIB problems. The other columns show the results for different scaling
rules which are characterized by the time required for scaling and the final
value of σ(A) obtained. Symbol ”-” shows that the given rule could not reach
the predefined σ(A).

Test result with termination condition σ(A) ≥ 103:
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name size σ(A) MinMax modified Mean Geometric

(var-const) σ(Ascaled) Time
(sec)

σ(Ascaled) Time
(sec)

σ(Ascaled) Time
(sec)

BEACONFD 262-173 1,578E+06 9,023E+02 0,009 6,961E+02 0,000 - -
CZPROB 3523-929 3,000E+06 8,380E+02 0,651 7,843E+02 0,187 - -
DEGEN3 1818-1503 4,700E+03 7,907E+02 0,125 2,285E+02 0,109 - -
FFFFF800 854-524 2,823E+07 9,212E+02 0,202 6,479E+02 0,047 - -
FIT1P 1677-627 1,890E+05 7,198E+02 0,046 4,018E+02 0,047 9,476E+02 0,047
FIT2D 10500-25 1,626E+05 9,921E+02 0,000 8,703E+02 0,016 - -
FIT2P 13525-3000 5,128E+04 9,654E+02 5,897 5,510E+02 2,278 - -
PEROLD 1376-625 6,940E+08 9,915E+02 0,722 9,941E+02 0,172 - -
SCAGR7 140-129 3,450E+04 6,440E+02 0,003 7,980E+02 0,016 6,686E+02 0,001
SHIP04L 2118-402 5,304E+05 8,634E+02 0,043 5,603E+02 0,062 - -
SHIP04S 1458-402 5,304E+05 8,634E+02 0,030 5,603E+02 0,047 - -
SHIP12L 5427-1151 9,006E+05 7,973E+02 1,393 8,000E+02 0,452 - -
STOCFOR2 2031-2157 7,063E+05 8,655E+02 0,098 2,741E+02 0,187 8,092E+02 0,187

Test result with termination condition σ(A) ≥ 104:

name size σ(A) MinMax modified Mean

(var-const) σ(Ascaled) Time
(sec)

σ(Ascaled) Time
(sec)

BOEING2 143-166 1,000E+07 5,777E+03 0,051 8,069E+03 0,016
CAPRI 353-271 3,162E+07 9,823E+03 0,026 9,972E+03 0,531
D6CUBE 6184-415 1,152E+04 8,524E+03 0,047 4,812E+03 0,062
MAROS 1443-846 4,009E+08 7,558E+03 0,515 4,295E+03 0,047
PILOT4 1000-410 1,067E+09 9,867E+03 0,156 8,401E+03 0,047
STAIR 467-356 8,984E+06 9,670E+03 0,047 9,645E+03 0,011

Tests were performed in the following environment:

• Operating system: Microsoft Windows 7

• CPU: Intel Core i3 2120

• RAM: 8 GB DDR3

Table 1 (in appendix) presents all of the test problems.

One can see from the table that my Min-Max method is more efficient than
the Geometric rule, because it can reach the predefined σ(A) for every test
problem. The required time was almost the same in case of our Min-Max method
and Mean rule, but there are several test problem (for instance STOCFOR2,
SHIP12L) on which the one or the other method was a bit faster.

I proposed an easy to implement scaling method which is more efficient than
Geometric rule. Compering it with the Mean rule we can see that both rules are
quite similar from the point of view of the run time and improvement achieved
in σ(A), but there are some special cases when a little difference appears.



Chapter 3

Integer Programming and
Branch and Bound method

3.1 Overview of Branch and Bound algorithm

The Branch and Bound (B&B) algorithm, first proposed by Land and Doig
[31], is a well known and efficient algorithm for solving Integer Programming
(IP) or Mixed Integer Programming (MIP) problems, it is used by all commercial
solvers. In this section first I outline the main steps and mechanism of B&B
method, after that I present our method proposed for calculating an initial
bound. In the following sections I show how an initial bound, defined by our
new method, can improve the efficiency of B&B algorithm.

Let us consider an IP problem in a general form:

f(x)→ min (3.1)

subject to

gi(x) ≤ bi i = 1, . . . ,m (3.2)

x = (x1, x2, . . . , xn), xj − integer, j = 1, 2, . . . , n, (3.3)

where x ∈ Rn and S = {x | gi(x) ≤ bi, ∀i = 1, . . . ,m}. Denote the set of
indices by J = {1, 2, . . . , n}. The problem obtained by removing restrictions
(3.3) is called relaxation problem (3.1)-(3.2).

B&B algorithm for IP can be described by the following general pseudo code:

46
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Initialization;
N := ∅ ; /* Set of active subproblems/nodes */

OPTSOL := NULL ; /* Best node */

BOUND := ∞ ; /* In case of maximization it is −∞ */

solve(S0) → x∗
(0)

;

if x∗
(0)

j ∈ Z ∀j ∈ J then

return x∗
(0)

; /* Optimal solution found */

else
N := N

⋃
{S0} ;

end
while N 6= ∅ do

V:= ∅ ; /* Initialize the set of non-integer variables */

Determine the branching variable;
Sact := searching strategy(N) ; /* see subsection (3.1.2) */

N := N \ Sact;
solve(Sact) → x∗

(act)

;

if x∗
(act) 6= NULL ; /* Optimal solution exists */

then

if x∗
(act)

j ∈ Z ∀j ∈ J then
if obj(Sact) ≤ BOUND then

BOUND := obj(Sact) ; /* Update BOUND */

OPTSOL := x∗
(act)

;

end

else
if obj(Sact) < BOUND then

V := {j|x∗(act)

j /∈ Z};
b := branching rule(V) ; /* see subsection (3.1.1) */

Sact left := add constraint(Sact, xb ≤ [x∗
(act)

b ]);

Sact right := add constraint(Sact, xb ≥ [x∗
(act)

b ] + 1);

N := N
⋃
{Sact left, Sact right};

end

end

end

end
return OPTSOL;

Algorithm 3: B&B algorithm
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where S0 is the relaxation problem, x∗
(k)

= (x∗
(k)

1 , x∗
(k)

2 , . . . , x∗
(k)

n ) is the optimal
solution of subproblem Sk obtained by simplex or dual simplex algorithm and
obj(Sk) gives the optimal objective value of subproblem Sk. Here and in what
follows we suppose that relaxation problem S0 has an optimal solution, if it has
not it is obvious that the original problem also has no solution.

B&B solves an IP problem by splitting the feasible set and generating sub-
problems. The set of subproblems can be represented by a binary tree where
every node identifies a subproblem which is derived from its parent node, i.e.
the previous subproblem. The first subproblem, the root node, is the relaxation
of the original optimization problem.

Branching procedure means if a subproblem Sk has a solution that does not
satisfy the integer restrictions (3.3), we choose one of the variables which have
a non-integer optimal value. This variable is called branching variable. There
are several rules and advices on selection of branching variables (see section
3.1.1). Using the branching variable chosen (xi0) we create two subproblems
Sleft, Sright. Both subproblems ”inherit” all of the constraints from their parent

node and they are also extended with new linear constraints: xi0 ≤ bx∗
k

i0
c is

added to Sleft and xi0 ≥ dx∗
k

i0
e is added to Sright, where bxc means the lower

integer part of value x, and dxe means the upper integer part of value x. This
type of constraints means only a new upper or lower bound for variable xi0 , so
it is not necessary to increase the size of the constraint matrix, it is enough to
update the bound section.

In the first level, in case of the root problem, bound is −∞ in case of maxi-
mization or ∞ in case of minimization. As we have found a feasible solution we
can redefine the bound if the solution found has a better objective value than
the current bound. In any case when we find a feasible solution we have to
compare the corresponding objective value with the current bound and update
the bound if it is necessary. This value has an important role during the B&B
process. Branching is needed if and only if the current objective value is not
worse (smaller in case of maximization and larger in case of minimization) than
the current bound. It is obvious that further branching in a subproblem which
already has a worse objective value than the current bound does not result a
better feasible solution than that one which objective is equal to the current
bound.

Tree building process based on branching procedure can be illustrated by
the following figure:
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S0

S1 = S0 left

S1 left S1 right

. . . . . .

S2 = S0 right

Underlined subproblems are leaf nodes. The reason why a subproblem does
not have any descendants can be the following:

• The subproblem has an integer optimal solution.

• The subproblem has no feasible solution.

• When we have to decide if the current subproblem has to be split or not,
the current bound is better than the optimal objective value of the current
subproblem.

It is obvious this algorithm after simple modification in feasibility-checking
and choosing branching variable can be used for Mixed Integer Programming
(MIP) problems too.
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3.1.1 Branching rules

Suppose that an active node, subproblem Sk, has been selected for branch-
ing. Denote the indices of variables with non-integer optimal values by V =

{j | x∗kj /∈ Z}. Practical experience shows that selection of branching variable
from set V can dramatically affect the size of binary tree and, hence, also the
running time of the algorithm. The most of professional solvers provide users
a capability to set the branching variable selection mode. For instance the
following table contains the available settings of variable selection parameter,
CPX PARAM VARSEL, in CPLEX.

Value Meaning

-1 Branch strictly at the nearest integer value which is closest
to the fractional variable.

1 Branch strictly at the nearest integer value which is furthest
from the fractional variable.

0 CPLEX automatically decides each branch direction.
2 Use pseudo costs, which derive an estimate about the effect

of each proposed branch from duality information.
3 Use strong branching, which invests considerable effort in

analyzing potential branches in the hope of drastically re-
ducing the number of nodes that will be explored.

4 Use pseudo reduced costs, which are a computationally less
intensive form of pseudo costs.

Table 3.1: Branching variable choice settings in CPLEX ([50])

LINGO, as many other solvers, has fewer possible options. It allows only
to specify a priority, it means that an ordering of variables can be defined and
the branching variable is chosen according to this order. In case of LINGO it
is a very simple ordering, we have only one option, namely we can give higher
priority for binary variables ([34]).
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Figure 3.1: LINGO branching priority settings
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3.1.2 Searching strategies

Given a set N of active subproblems, i.e. set of unpruned nodes of the
current B&B tree. There are several rules for selecting the node should be
processed next. Two basic categories of these rules can be mentioned: rules
based on the place of nodes in the tree (Last-In-First-Out) and rules that use
other information (estimations, reduced cost, etc.). According to this CPLEX
has the following possible alternatives, which can be set by define the value of
node selection parameter, CPX PARAM NODESEL.

Value Meaning

1 Best Bound search, which means that the node with the
best objective function will be selected, generally near the
top of the tree.

2 Best Estimate search, whereby CPLEX will use an estimate
of a given node’s progress toward integer feasibility relative
to its degradation of the objective function. This setting
can be useful in cases where there is difficulty in finding
feasible solutions or in cases where a proof of optimality is
not crucial.

3 A variation on the Best Estimate search.
0 Depth First search will be conducted. In many cases this

amounts to a brute force strategy for solving the combina-
torial problem, gaining a small amount of tactical efficiency
due to a variety of reasons, and it is rare that it offers any
advantage over other settings.

Table 3.2: CPLEX node selection strategies ([50])

LINGO has similar settings, in case of API the parameter NODESL should
be defined ([34]), in case of graphical interface the following figure shows the
appropriate combobox.
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Figure 3.2: LINGO node selection settings

3.1.3 Initial bound

It is well known that the performance of the B&B method mainly depends
on the following three main factors:
• the rule used for choosing the branching variable,
• the strategy used for generating binary search tree and
• the value of the initial bound.
Numerous efforts have been made in past decades to investigate general

properties and behavior of B&B method, e.g. [9], [17], [18], [30], [32], [38],
[47], [49], to improve its computational efficiency, e.g. [10], [19], [20], [21], [33],
to maximize its performance in different computational environments, see for
example [16], [48], etc.

Generally speaking, while branching variable and searching strategy deter-
mine the size of binary tree to be generated, getting a ”good” bound as soon
as possible can dramatically reduce the size of the tree to be considered, since
bound is used to prune those parts of a tree where the value of the objective
function cannot be better than the bound. My aim was to give a general algo-
rithm which can provide a bound before we start the tree-building. For this I
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give a procedure which can define a feasible integer solution aspiring to the best
possible objective value using minimal computational effort and time. In the
following section I overview the algorithm which inspired my work after that I
present my new procedure for searching an initial bound.

3.2 Ray method

Nowadays many researchers in different countries investigates IP problems
in order to develop alternative algorithms for problems with discrete variables.
One of such investigations was performed in the Computer Center of the Rus-
sian Academy of Sciences [24], [25]. Schematically, the method developed by
Khachaturov et al. is based on the search of ”better” feasible integer solutions in
some special set along some direction called ”ray”. In this section I present my
new algorithm for determining initial bound for the Branch and Bound (B&B)
method. The idea of this algorithm is based on the use of ”ray” as introduced
in the ”ray-method” developed for solving integer linear programming problems
[24], [25]. Instead of solving an integer programming problem I use the main
idea of the ray-method to find an integer feasible solution of an integer linear
programming problem along the ray as close to an optimal solution of the re-
laxation problem as possible. The objective value obtained in this manner is
used as an initial bound for B&B method. As it was mentioned in the previ-
ous section, getting a ”good bound” as soon as possible can often significantly
increase the performance of B&B method.

3.2.1 Original ray-method

Let us briefly overview the original ray-method - its mathematical back-
ground, its general scheme, different ways to define the ray, and implementation
issues.

Originally, the method was developed for a non-linear integer programming
problem of the following form:

f(x)→ min (3.4)

st.

x ∈ S ⊂ Rn, (3.5)

x = (x1, x2, . . . , xn), xj − integer, j = 1, 2, . . . , n, (3.6)
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where feasible set

S = {x ∈ Rn | gi(x) ≤ bi, i = 1, 2, . . . ,m}

is a convex, bounded and non-empty set, objective function f(x) is non-linear
differentiable ∀x ∈ S and bounded from below on S, functions gi(x), i =
1, 2, . . . ,m, are non-linear and differentiable.

3.2.1.1 Mathematical background

Definition 1 Let be given a feasible integer point x0 ∈ Rn. We say that integer
point x′ belongs to neighborhood set O(x0), i.e. x′ ∈ O(x0) if values∣∣x0

1 − x′1
∣∣ , ∣∣x0

2 − x′2
∣∣ , . . . ,

∣∣x0
n − x′n

∣∣
are relative primes.

Note that O(x0) has the following obvious properties.

Property 1 x0 /∈ O(x0).

Property 2 If point x′ ∈ O(x0), then on the straight line open segment (x0, x′)
there is no integer point, i.e. there is no integer point x such that

x = x0 + λ(x′ − x0), 0 < λ < 1 .

Let S(x0) denote the subset of feasible set S, where f(x) is strictly less than
f(x0), i.e.

S(x0) = {x ∈ S | f(x) < f(x0)}.

Using this notation we can formulate the following optimization criteria.

Theorem 3.1 Feasible integer point x0 is an optimal solution for problem (3.4)-
(3.6) if and only if

O(x0) ∩ S(x0) = ∅ (3.7)

For Proof see [24], [25].
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3.2.1.2 General scheme

Let x0 be an integer feasible solution for problem (3.4)-(3.6). In accordance
with the main idea of the method we have to find such an integer point x′ ∈
O(x0) that x′ ∈ O(x0) ∩ S(x0). If O(x0) ∩ S(x0) = ∅, then x0 is an optimal
solution for problem (3.4)-(3.6). The problem is solved.

Otherwise, i.e. if O(x0) ∩ S(x0) 6= ∅, we solve the following one-variable
minimization problem:

f(λ) = f(x0 + λ(x′ − x0))→ min (3.8)

x0 + λ(x′ − x0) ∈ S (3.9)

λ ≥ 0. (3.10)

Since both points x0 and x′ belong to the convex bounded non-empty feasible
set S, constraint (3.9) defines the segment of straight line x0 +λ(x′−x0), which
belongs to S. So constraints (3.9) and (3.10) determine a non-empty bounded
subset of S. Since original objective function f(x) is continuous ∀x ∈ S and
bounded from below, it means that function f(λ) is continuous and bounded
too on any subset of S. The latter means that problem (3.8)-(3.10) is solvable
and may be solved by any suitable numerical method. Let λmin be its optimal
solution and [λmin] denote its integer part. Concerning value [λmin] + 1 it may
occur that

x0 + ([λmin] + 1)(x′ − x0) /∈ S, (3.11)

or
f(x0 + ([λmin] + 1)(x′ − x0)) ≥ f(x0 + [λmin](x′ − x0)) . (3.12)

Now we construct the following point:

x′′ =

{
x0 + [λmin](x′ − x0), if (3.11) or (3.12) takes place,

x0 + ([λmin] + 1)(x′ − x0), otherwise.

In other words, first, solving problem (3.8)-(3.10) we search the minimal
value of function (3.8) on the ray beginning from point x0 and passing through
point x′. Then on this ray we have to find an integer feasible point x′′ for which
f(x′′) is most close to value f(λmin). In the next step we denote point x′′ by
x0 and repeat the process. The new set S(x0) differs from the previous one by
only one constraint f(x) <= f(x0) = f(x′′).

Since the number of integer points in feasible set S is bounded, the process
will terminate in a finite number of iterations.
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3.2.1.3 Different rules to define the ray

Let point x0 be an integer feasible solution for problem (3.4)-(3.6), i.e. x0 ∈
S. We will say that L = {x ∈ Rn |x = x0+λl, λ ≥ 0}, where l = (l1, l2, . . . , ln) ∈
Rn, is a ray, if there exists λ′ > 0 such that f(x0 + λ′l) < f(x0). Using this
notation, we describe here the following three ways by [25] for constructing a
ray.

Procedure 1: Let x∗ be the optimal solution of the relaxation problem (i.e.
the problem without the integrality constraints) (3.4)-(3.5). Define ray L as

L = {x ∈ Rn |x = x0 + λ (x∗ − x0), λ ≥ 0}. (3.13)

Procedure 2: Calculate the gradients∇gi(x) at the point x0 for all gi(x), i =
1, 2, . . . ,m, functions, and introduce rays Li, i = 1, 2, . . . ,m in the following
way:

Li = x0 + λ∇gi(x0), λ ≥ 0,

if exists such λ′ > 0, that f(x0 + λ′ ∇gi(x0)) < f(x0). And

Li = x0 − λ∇gi(x0), λ ≥ 0,

otherwise.
Procedure 3: Choose the following formula for the ray.

L = x0 − λ∇f(x0), λ ≥ 0. (3.14)

3.2.1.4 Implementation issues

In contrast to the transparency of theoretical background for the method
there are serious difficulties with its implementation and computational effi-
ciency. The main and most serious of them is checking optimality criteria for
a given feasible integer point x0 since set O(x0) may contain a huge number of
integer points. Note that, as it was mentioned above, these integer points were
selected on the basis of usage of relative prime numbers, so determining these
integer points may be a very hard and computationally very expensive problem.

3.2.2 The new method proposed

Here I explain the main idea of my algorithm proposed: first of all I define
the ray, and then describe the main steps of the procedure. Finally, using a
small illustrative numerical example, I show how my new algorithm is utilized.
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As it was mentioned above, the ray-method was originally developed as a
method for solving non-linear integer programming problems. Using the main
idea of the method, below I propose a new algorithm which is used for determin-
ing an initial bound in B&B method when solving integer linear programming
problems.

3.2.2.1 Preliminaries

Consider the following pure integer linear programming minimization prob-
lem:

f(x) =

n∑
j=1

cjxj → min (3.15)

subject to
n∑
j=1

aijxj ≤ bi, i = 1, 2, . . . ,m, (3.16)

xj ≥ 0, integer, j = 1, 2, . . . , n. (3.17)

Here and in what follows we assume that relaxation problem (3.15)-(3.17) is
solvable (i.e. has a non-empty feasible set and objective function f(x) over the
feasible set has a finite lower bound) and vector

xmin = (xmin1 , xmin2 , . . . , xminn )

is its relaxation non-integer solution. Furthermore, we suppose that the corre-
sponding maximization relaxation problem is solvable too, and

xmax = (xmax1 , xmax2 , . . . , xmaxn )

is its optimal solution. These two assumptions play a very important role in
my new algorithm since I use points xmin and xmax to determine the ray for
indicating the direction of the search. Moreover we assume that xmin 6= xmax.

3.2.2.2 Main steps

Using the given notation, my new algorithm proposed is described in the
following steps.

0. Initial point: Let us denote point xmin by x0, and l = (l1, l2, . . . , ln), where
lj = xmaxj − xminj , j = 1 . . . n.
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1. Ray: Define the ray in the following way:

L = x0 + λ(xmax − x0), 0 ≤ λ ≤ 1 .

Note that since feasible set S is convex, it means that all points of L are
elements of set S.

2. Constructing set O(x0): Let J0 be a set of indexes of integer components
of x0, i.e. J0 = {j ∈ J | x0

j = [x0
j ]}, where J = {1, 2, . . . , n}. Define set

O(x0) as the set of such points x which satisfy the following constraints:

[x0
j ] ≤ xj ≤ [x0

j ] + 1, if j /∈ J0 ,

[x0
j ] ≤ xj ≤ [x0

j ] + 1, if j ∈ J0 and lj > 0 ,

[x0
j ]− 1 ≤ xj ≤ [x0

j ], if j ∈ J0 and lj < 0 ,

xj = [x0
j ], if j ∈ J0 and lj = 0 .


(3.18)

Generally speaking O(x0) is the unit-cube containing the point x0. If
J0 = ∅, then the dimension of this unit-cube is n.

Before starting the iterations define the point x′ := x0 and calculate the
first perforation point Pact = (p1, p2, . . . , pn) solving the following opti-
mization problem:

λ→ max (3.19)

subject to

pj = x0
j + λlj j = 1, 2, . . . , n, (3.20)

[x0
j ] ≤ pj ≤ [x0

j ] + 1, j /∈ J0 ,

[x0
j ] ≤ pj ≤ [x0

j ] + 1, j ∈ J0 and lj > 0 ,

[x0
j ]− 1 ≤ pj ≤ [x0

j ], j ∈ J0 and lj < 0 ,

pj = [x0
j ], j ∈ J0 and lj = 0 .


(3.21)

3. Shifting: Enter new variables yj = xj − [x′j ], j = 1, 2, . . . , n, and construct
new feasible set S′ in the following way

S′ :

n∑
j=1

aijyj ≤ b′i, i = 1, 2, . . . ,m ,
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where

b′i = bi −
n∑
j=1

aij [x
′
j ], i = 1, 2, . . . ,m .

Obviously, set S′ is the intersection of the current set O(x′) and feasible
set S shifted to point 0. Then solve the following 0-1 LP problem

f ′(y) =

n∑
j=1

cjyj + c0 → max (3.22)

subject to
n∑
j=1

aijyj ≤ b′i, i = 1, 2, . . . ,m, (3.23)

yj = 0/1, j = 1, 2, . . . , n, (3.24)

where

c0 =

n∑
j=1

cj [x
′
j ] ,

using Balas’ additive algorithm (implicit enumeration) [8]. If problem
(3.22)-(3.24) has 0-1 optimal solution y∗, then vector x∗ = (x∗1, x

∗
2, . . . , x

∗
n)

is determined, where

x∗j = y∗j + [x′j ], j = 1, 2, . . . , n ,

and value f(x∗) = f ′(y∗) is used as an initial bound for the branch and
bound method. Stop.
Otherwise,

4. Perforation point: Determine point Pnext where the ray ”perforates” the
hull of the next unit-cube along the ray solving the following optimization
problem:

λ→ max (3.25)

subject to
xj = x0

j + λlj j = 1, 2, . . . , n , (3.26)

[pj ] ≤ xj ≤ [pj ] + 1, j /∈ J ′ ,

[pj ] ≤ xj ≤ [pj ] + 1, j ∈ J ′ and lj > 0 ,

[pj ]− 1 ≤ xj ≤ [pj ], j ∈ J ′ and lj < 0 ,

xj = [pj ], j ∈ J ′ and lj = 0 ,


(3.27)
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where J ′ = {j ∈ J | pj = [pj ]}. Here constraints (3.20) and (3.21) provide
Pnext ∈ L and Pnext ∈ O(Pact), correspondingly. Obviously, this problem
is solvable, i.e. has a non-empty feasible set and its objective function is
bounded from above. Let Pnext = (p′1, p

′
2, . . . , p

′
n) solve problem (3.19)-

(3.21) and λ′ be the maximal value of objective function (3.19).

Now, define the middle point x′ of section [Pact; Pnext]:

x′j =
pj + p′j

2
j = 1, 2, . . . , n . (3.28)

Furthermore, point Pact is not needed any more, so I overwrite it with the
value of Pnext, i.e. Pact := Pnext.

5. Next unit-cube: Having point x′ I determine the next unit-cube along the
ray using the following rule:

[x′j ] ≤ xj ≤ [x′j ] + 1, if j /∈ J ′ ,

[x′j ] ≤ xj ≤ [x′j ] + 1, if j ∈ J ′ and lj > 0 ,

[x′j ]− 1 ≤ xj ≤ [x′j ], if j ∈ J ′ and lj < 0 ,

xj = [x′j ], if j ∈ J ′ and lj = 0 ,


(3.29)

where J ′ = {j ∈ J | x′j = [x′j ]}. Go to step 3.

Since the number of unit-cubes ”perforated” by the ray is finite, the process
will terminate in a finite number of iterations. It may occur that when deter-
mining next perforation point x′ λ′ > 1 is obtained. It means that unit-cubes
constructed along the ray do not contain any integer feasible point for original
problem (3.15)-(3.17). It means the method fails.

3.2.3 Adaptation for MIP problems

Here I give the appropriate modification of my algorithm proposed for mixed
integer programming (MIP) problems too. Consider the following MIP problem
in general form:

f(x) =

n∑
j=1

cjxj → min (3.30)
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subject to
n∑
j=1

aijxj ≤ bi, i = 1, 2, . . . ,m, (3.31)

xj ≥ 0, j = 1, 2, . . . , n. (3.32)

xj − integer, j ∈ J i ⊂ J = {1, 2, . . . , n} (3.33)

0. Initial point: Let us denote point xmin by x0, and l = (l1, l2, . . . , ln), where
lj = xmaxj − xminj , j = 1 . . . n.

1. Ray: Define the ray as above:

L = x0 + λ(xmax − x0), 0 ≤ λ ≤ 1 .

2. Constructing set O(x0): J0 is a set of indexes of integer components of
x0, i.e. J0 = {j ∈ J | x0

j = [x0
j ]}, where J = {1, 2, . . . , n}. I define set

O(x0) as the set of such points x which satisfy the following constraints:

[x0
j ] ≤ xj ≤ [x0

j ] + 1, if j ∈ J i \ J0,

[x0
j ] ≤ xj ≤ [x0

j ] + 1, if j ∈ J i ∩ J0 and lj > 0,

[x0
j ]− 1 ≤ xj ≤ [x0

j ], if j ∈ J i ∩ J0 and lj < 0,

xj = [x0
j ], if j ∈ J i ∩ J0 and lj = 0.


(3.34)

Define the point x′ := x0 and calculate the first perforation point Pact =
(p1, p2, . . . , pn) solving the following optimization problem:

λ→ max (3.35)

subject to

pj = x0
j + λlj j = 1, 2, . . . , n, (3.36)

[x0
j ] ≤ pj ≤ [x0

j ] + 1, j ∈ J i \ J0 ,

[x0
j ] ≤ pj ≤ [x0

j ] + 1, j ∈ J i ∩ J0 and lj > 0 ,

[x0
j ]− 1 ≤ pj ≤ [x0

j ], j ∈ J i ∩ J0 and lj < 0 ,

pj = [x0
j ], j ∈ J i ∩ J0 and lj = 0 .


(3.37)
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3. Shifting: Enter new variables yj = xj − [x′j ], j = 1, 2, . . . , n, and construct
new feasible set S′ in the following way

S′ :

n∑
j=1

aijyj ≤ b′i, i = 1, 2, . . . ,m ,

where

b′i = bi −
n∑
j=1

aij [x
′
j ], i = 1, 2, . . . ,m .

Then solve the following mixed binary LP problem

f ′(y) =

n∑
j=1

cjyj + c0 → max (3.38)

subject to
n∑
j=1

aijyj ≤ b′i, i = 1, 2, . . . ,m, (3.39)

yj = 0/1, j ∈ J i (3.40)

0 ≤ yj ≤ 1, j ∈ J \ J i (3.41)

where

c0 =

n∑
j=1

cj [x
′
j ] ,

If problem (3.22)-(3.24) has an optimal solution y∗, then vector x∗ =
(x∗1, x

∗
2, . . . , x

∗
n) is determined, where

x∗j = y∗j + [x′j ], j = 1, 2, . . . , n ,

and value f(x∗) = f ′(y∗) is used as an initial bound for the branch and
bound method. Stop.
Otherwise,

4. Perforation point: I determine point Pnext as follows:

λ→ max (3.42)

subject to
xj = x0

j + λlj j = 1, 2, . . . , n , (3.43)
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[pj ] ≤ xj ≤ [pj ] + 1, j ∈ J i \ J ′ ,

[pj ] ≤ xj ≤ [pj ] + 1, j ∈ J i ∩ J ′ and lj > 0 ,

[pj ]− 1 ≤ xj ≤ [pj ], j ∈ J i ∩ J ′ and lj < 0 ,

xj = [pj ], j ∈ J i ∩ J ′ and lj = 0 ,


(3.44)

where J ′ = {j ∈ J | pj = [pj ]}. Suppose that Pnext = (p′1, p
′
2, . . . , p

′
n) solve

problem (3.19)-(3.21) and λ′ be the maximal value of objective function
(3.19).

Let us define middle point x′ of section [Pact; Pnext]:

x′j =
pj + p′j

2
j = 1, 2, . . . , n . (3.45)

and Pact := Pnext.

5. Next unit-cube: Having point x′ determine the next unit-cube along the
ray using the following rule:

[x′j ] ≤ xj ≤ [x′j ] + 1, if j ∈ J i \ J ′ ,

[x′j ] ≤ xj ≤ [x′j ] + 1, if j ∈ J i ∩ J ′ and lj > 0 ,

[x′j ]− 1 ≤ xj ≤ [x′j ], if j ∈ J i ∩ J ′ and lj < 0 ,

xj = [x′j ], if j ∈ J i ∩ J ′ and lj = 0 ,


(3.46)

where J ′ = {j ∈ J | x′j = [x′j ]}. Go to step 3.

3.2.4 An illustrative numerical example

Here I illustrate the main steps of the method proposed using a small nu-
merical example. My method proposed was partially implemented in the frame
of the educational linear and linear-fractional package WinGULF [4]. The pack-
age has numerous options for the B&B method - we can choose the direction of
the search (first left node and then right one or vice versa), different rules for
selecting a branching variable (for example, ”fractional part most close to 0.5”,
”smallest fractional part”, ”biggest fractional part”, ”smallest value”, ”biggest
value”, etc.), user defined initial bound, etc. When testing the method pro-
posed, most of the options built in were used. For testing on large MIPLIB
problems I implemented my ray-method in C++ using CPLEX callable library
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for solving subproblems.

Consider the following numerical example:

f(x) = 20x1+ 21x2+ 18x3 → min
subject to

9x1+ 1.5x2+ 7x3 ≤ 1350 ,
5.5x1+ 1x2+ 9x3 ≥ 1250 ,
−4.5x1− 10x2+ 2.5x3 ≤ −1050 ,

x1, x2, x3 − integer.

Solving both (minimization and maximization) relaxation problems we obtain
the following:

xmin = ( 65.042, 97.799, 88.274) ,
xmax = ( 0.000, 523.076, 80.769) ,
L = ( −65.042, 425.277, −7.504) .

Let us denote xmin with x0 and construct set O(x0), i.e. the following unit-
cube:

O(x0) :


65 ≤ x1 ≤ 66 ,

97 ≤ x2 ≤ 98 ,

88 ≤ x3 ≤ 89 .

So the first shifted problem is constructed:

f ′(y) = 20y1+ 21y2+ 18y3 + 4921 → max
st.

9y1+ 1.5y2+ 7y3 ≤ 3.5 ,
5.5y1+ 1y2+ 9y3 ≥ 3.5 ,
−4.5y1− 10y2+ 2.5y3 ≤ −7.5 ,

y1, y2, y3 − 0/1

and solve it. Since the problem is infeasible, next unit-cube along the ray have
to be determined. In order to obtain the next unit-cube first solve the following
problem (see (3.19)-(3.21)):

λ→ max
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subject to

x1 = 65.042 + λ(−65.042) ,

x2 = 97.799 + λ(425.277) ,

x3 = 88.274 + λ(−7.504) ,


65 ≤ x1 ,

x2 ≤ 98 ,

88 ≤ x3


and obtain the first perforation point P1:

λ′ = 0.00047, P1 = (65.011, 98, 88.270) .

To find the next perforation point P2 the following problem has to be solved:

λ→ max

subject to

x1 = 65.042 + λ(−65.042) ,

x2 = 97.799 + λ(425.277) ,

x3 = 88.274 + λ(−7.504) ,


65 ≤ x1 ,

x2 ≤ 99 ,

88 ≤ x3 ,


so I obtain

λ′′ = 0.00064, P2 = (65, 98.07, 88.26) .

Using these points P1 and P2 I find the middle point

x′ = (65.006, 98.03, 88.26) .
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This point allows us to construct the next shifted problem:

f ′(y) = 20y1+ 21y2+ 18y3 + 4942 → max
st.

9y1+ 1.5y2+ 7y3 ≤ 2 ,
5.5y1+ 1y2+ 9y3 ≥ 2.5 ,
−4.5y1− 10y2+ 2.5y3 ≤ −2.5 ,

y1, y2, y3 − 0/1 .

This problem has no feasible solution.

Proceeding to the next perforation point P3, we obtain the following opti-
mization problem to solve

λ→ max

subject to
x1 = 65.042 + λ(−65.042) ,

x2 = 97.799 + λ(425.277) ,

x3 = 88.274 + λ(−7.504) ,


64 ≤ x1 ,

x2 ≤ 99 ,

88 ≤ x3 .


We obtain λ = 0.0028 and the next perforation point P3 = (64.85, 99, 88.25).
Therefore the next middle point is x′ = (64.93, 98.53, 88.26) and the shifted
problem is as follows:

f ′(y) = 20y1+ 21y2+ 18y3 + 4922 → max
subject to

9y1+ 1.5y2+ 7y3 ≤ 11 ,
5.5y1+ 1y2+ 9y3 ≥ 8 ,
−4.5y1− 10y2+ 2.5y3 ≤ −2 ,

y1, y2, y3 − 0/1 .

The optimal solution of this problem is y∗ = (0, 1, 1) and f ′(y∗) = 4961.
This value was used as an initial bound. The corresponding integer point is
x∗ = (64, 99, 89).
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Note that the initial bound obtained (4961) is very close to the optimal value
(after solving the problem we obtain 4959). Below is presented a table with re-
sults obtained from WinGULF after running B&B method on this numerical
example using different strategies (from left to right and vice versa) and differ-
ent branching rules. ”Wo.I.B.” means without an initial bound and ”W.I.B.”
means with an initial bound.

Branching Left → Right Right → Left
variable Wo.I.B. W.I.B. Wo.I.B. W.I.B.

Minimal index 291 37 37 33
Maximal index 31 23 243 23
Max. value 33 25 245 25
Min. value 31 25 25 25
Max. fract. part 105 41 37 37
Min. fract. part 31 23 23 23
Most close to 0.5 31 25 25 25

In column ”Wo.I.B.” are the size of the tree (number of its nodes) built
while solving the problem without my initial bound, and in column ”W.I.B.”
number of nodes for solving the same problem using my initial bound can be
seen. As we can see also on this simple example using my initial bound defining
technique we can reach an enormous reduction in size of binary tree.

3.2.5 Implementation issues

Considering the optimization subproblems (3.19)-(3.21) (and also (3.35)-
(3.37)) I suggest the following solution instead of this optimization problem.
Here I show that these optimization subproblems can be replaced with a simple
formula.

First of all I replace variables xj in (3.21) with the right-hand-side expres-
sions of (3.20). This replacement allows us to transform the original n+ 1 vari-
able optimization problem to the following one-variable system of constraints:
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

[x0
j ] ≤ x0

j + λlj ≤ [x0
j ] + 1, if j /∈ J0 ,

[x0
j ] ≤ x0

j + λlj ≤ [x0
j ] + 1, if j ∈ J0 and lj > 0 ,

[x0
j ]− 1 ≤ x0

j + λlj ≤ [x0
j ], if j ∈ J0 and lj < 0 ,

x0
j + λlj = [x0

j ], if j ∈ J0 and lj = 0 .

(3.47)

Now consider the left-hand-side constraints of (3.47), i.e.
[x0
j ] ≤ x0

j + λlj , if j /∈ J0 ,

[x0
j ] ≤ x0

j + λlj , if j ∈ J0 and lj > 0 ,

[x0
j ]− 1 ≤ x0

j + λlj , if j ∈ J0 and lj < 0 ,

(3.48)

and rewrite it in the following form

λlj ≥ [x0
j ]− x0

j , if j /∈ J0 , (3.49)

λlj ≥ [x0
j ]− x0

j − 1, if j ∈ J0 and lj > 0 , (3.50)

λlj ≥ [x0
j ]− x0

j , if j ∈ J0 and lj < 0 , (3.51)

Introducing the following notations for index j:

J∗ = {j ∈ J | x0
j 6= [x0

j ]}, J∗+ = {j ∈ J∗| lj > 0}, J∗− = {j ∈ J∗| lj < 0},

J0
+ = {j ∈ J0| lj > 0}, J0

− = {j ∈ J0| lj < 0}, J0
0 = {j ∈ J0| lj = 0}.

Now consider constraints (3.49), (3.50), (3.51) separately. From (3.49) I have

λ ≥
[x0
j ]− x0

j

lj
, ∀j ∈ J∗+ (3.52)

and

λ ≤
[x0
j ]− x0

j

lj
, ∀j ∈ J∗− (3.53)

Note, that constraints (3.52) may be used to determine the lower bound for value
λ and only constraints (3.53) can be used to determine the upper bound for value
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λ. Since problem (3.19)-(3.21) is a maximization one constraints (3.52) is not
considered and I use only constraints (3.53). So, let K1 denote the following

K1 = min
j∈J∗−

[x0
j ]− x0

j

lj

Hence, (3.49) gives the following upper bound for λ

λ ≤ K1 (3.54)

Analogously, from (3.50) I obtain

λ ≤
[x0
j ]− x0

j − 1

lj
, ∀j ∈ J0

− (3.55)

Note, in accordance with definition of set J0 I have, that x0
j = [x0

j ], ∀j ∈ J0, so
(3.55) may be rewritten in the following form

λ ≤ − 1

lj
, ∀j ∈ J0

− (3.56)

Let us denote

K2 = min
j∈J0
−

−1

lj

So I obtain the following new upper bound for λ

λ ≤ K2 (3.57)

Constraints (3.51) is not considered since these constraints do not provide any
upper bound for value λ.

Processing in the same manner the right-hand-side conditions of system
(3.47), I obtain

λ ≤ K3 and λ ≤ K4, (3.58)

where

K3 = min
j∈J∗+

[x0
j ] + 1− x0

j

lj

K4 = min
j∈J0

+

1

lj
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Finally, combining (3.54), (3.57) and (3.58) I obtain the least upper bound
for value λ subject to constraints (3.19)-(3.21)

λ = min{K1, K2, K3, K4}

Using this simple formula when implementing the ray-method I could replace
the optimization subproblem (3.19)-(3.21) (and also (3.35)-(3.37)), and therefore
reach some more run time reduction.

3.2.6 Test results

The method proposed was implemented in WinGulf1. These test results
show not only the efficiency of the method proposed but also the dependence
of the size of B&B tree on node and variable selection strategies. For prelimi-
nary tests we implemented several options in WinGulf which provide different
strategies for users, as the following figures show.

Figure 3.3: WinGulf node selection settings

Our pure integer programming (IP) test files were generated automatically
in mps format in different size (25-50 variables and 25-50 constraints). The
different selection strategies are separately listed in Table 2, 3 and 4 (in ap-
pendix). ”Total” means the total number of the nodes in the B&B tree, ”Best”
is the node of the optimal solution. In column ”Difference” are the differences
between the two tree built by B&B method with and without our initial bound.

1General User-friendly Linear and linear-Fractional programming package for educational
purposes. Developed at the University of Debrecen. See: http://zeus.nyf.hu/ bajali-
nov/WinGulf/wingulf.html
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Figure 3.4: WinGulf branching variable selection settings

I used two different node selection strategies:

• ”Left to right” : Preorder tree-traversal. (Visit the root, traverse the left
subtree, traverse the right subtree.)

• ”Right to left” : Visit the root, traverse the right subtree, traverse the left
subtree.

I used the following branching variable selection strategies:

• ”Min. fract. part” : The noninteger variable with minimal fractional part
is chosen as branching variable.

• ”Max. fract. part” : The noninteger variable with maximal fractional
part is chosen as branching variable.

• ”Most close to 0.5” : The noninteger variable with fractional part most
close to 0.5 is chosen as branching variable.

These results are presented in tableaus in appendix.
One can see on these relatively small examples my ray-method can produce

an initial bound which reduces the size of B&B tree in an average of 16%.
Encouraged by this results I conducted further tests now using professional

solver CPLEX and official test files form MIPLIB. Therefore I implemented the
MIP adaptation of ray-method discussed in section 3.2.3 using CPLEX callable
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library. The structure of test code is as follows:

1. Read .mps or .lp input file.
2. CPLEX solves the problem → Time without bound
3. Ray method calculates an initial bound. → Time to define bound
4. CPLEX solves the problem using the

bound defined in previous step.
→ Time with bound

The following table shows these results. Most of the files can be found in
MIPLIB library, contributor is A. Atamtürk [2], [3].

Name Rows Cols Int Nz Time
without
bound
(sec)

Time
with

bound
(sec)

Time
to

define
bound
(sec)

Im-
prove-
ment

n4-3 1236 3596 174 14036 361,14 288,459 0,254 20%
n12-3 2430 6120 216 24048 69,689 42,633 0,568 38%
n5-3 1062 2550 150 9900 46,335 35,434 0,143 23%
n7-3 2336 5626 174 22156 24,586 21,502 0,31 11%
pr9 2220 7350 42 22176 108,52 86,464 11,618 10%
pr12 2313 5868 36 17712 2,604 1,604 0,4 23%

Table 3.3: Ray method test results on MIP files

The previous table shows the corresponding information about the test prob-
lems in the first five column (name, number of rows and columns, number of
integer variables and nonzero coefficients). The other columns present the test
results. In column ”Time without bound” you can find the time in sec which
was needed for IBM CPLEX for solving the IP problem without my bound. In
column ”Time to define bound” is the elapsed time while my method was cal-
culating the initial bound. Finally, column ”Time with bound” shows CPLEX’s
reduced run time while solving the same IP problem but using initial bound
calculated by ray-method.

As we can see an overall 20% improvement on run time can be observed
in case of these test files. Spending a very little time to calculating an initial
bound using my method a significant improvement can be reached on solving
IP problems.



Summary and conclusion

Nowadays OR applications highly depend on performance of computers. One
of the most urgent challenges is to develop the most efficient implementations
of the well-known algorithms whereby we can obtain a faster, numerically more
stable and more reliable version. However, computers have even larger perfor-
mance, real-world OR models are also even more complex so their computational
requirement is growing fast.

I was motivated by the reasons described above when started my investiga-
tions of different ways to improve stability and performance of computer codes.
Namely I focused my research on the following three different domains:

[1] preprocessing and postsolving in LFP

[2] scaling LFP problems and re-scaling solutions obtained, and

[3] getting better initial bound for branch-and-bound method in ILP and
MILP

In the first part of the dissertation I consider the different presolve methods
which are used for reducing the size of models by removing redundant con-
straints or fixing variables. When performing these manipulations some data
from the dual problem may be lost or distorted. To restore such data some
special postsolve operations are required. Based on [1] I developed the corre-
sponding adaptation of presolve methods for Linear-Fractional problems. In this
part I also showed the advantages of using my LFP presolve adaptation instead
of transforming the LFP model into LA form by Charnes-Cooper transformation
and using LP presolve on LA model.

The topic of the second part of section 2.2 discusses another preprocessing
technique, the scaling. Scaling methods are used for decreasing the numeri-
cal inaccuracies caused by floating-point arithmetic. Scaling also needs some
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postsolve (”re-scale”) operation to obtain the optimal solution of the original
problem from the optimal solution of the scaled, and therefore numerically more
stable problem. Here I aimed to adapt scaling for LFP at first, than I developed
my scaling rule ([5]) and compared with two other scaling method ([4], [36]) in
point of view of efficiency and run time on NETLIB test files. Tests show my
new scaling rule can be as efficient as the well known rules and compering with
geometric rule my algorithm reached better results on most of the test problems.

Finally, in the third part I discussed my method for improving solving of
IP and MIP problems. Our method based on [25] which presents theoretical
contexts of optimal solution of IP problems. Using these theorems I developed
a new method, called ray-method. Ray-method is used for finding not optimal
but a feasible solution of IP problem. Using the objective value of this feasible
solution I provide a bound value for B&B method when starting. The require-
ment for this kind of procedure is to be fast and provide a feasible solution as
close to the optimal point as possible. I tested my ray-method on random gener-
ated IP problems using WINGULF at first, than I adapted it for MIP problems
and developed a test environment using CPLEX Callable Library for comparing
the run-time of B&B algorithm with the initial bound found by ray-method or
without any initial bound. So I had the opportunity to test my method on large
problems from MIPLIB test collection library. According to these test results
my new method can improve the efficiency of the professional CPLEX solver by
about 21% on large IP and MIP problems.



Összefoglaló

Manapság az operációkutatás gyakorlati alkalmazása nagyban függ a számı́-
tógépek teljeśıtményétől. Egyik legfontosabb probléma a meglevő algoritmusok
hatékony alkalmazása számı́tógépes környezetben, ezért fontos az olyan irányú
továbbfejlesztésük, mely során egy gyorsabb, pontosabb és megb́ızhatóbb imple-
mentációt kapunk. Bár a számı́tógépek egyre nagyobb teljeśıtményre képesek,
az ipari alkalmazások során keletkező modellek is egyre összetettebbek, ı́gy
erőforrásigényük is egyre növekszik.

Ezen motivációból eredően kezdtem foglalkozni különböző stabilitás- és tel-
jeśıtmény jav́ıtó lehetőségeken. Ezen belül három különböző területtel, melyeknek
közös célja, hogy gyorśıtsák vagy pontośıtsák a különböző optimalizációs felada-
tok számı́tógépes megoldását.

Az első körben az un. presolve eljárásokkal foglalkoztam, melyek a fela-
dat méretének csökkentését szolgálják azáltal, hogy redundáns feltételeket vagy
rögźıthető változókat szűrnek ki és távoĺıtanak el a modellből. Ezen változások
miatt azonban duális információk is elvesznek. Ezek helyreálĺıtásához szükség-
esek a kapcsolódó postsolve műveletek. A [1] munkán alapulva kidolgoztam a
megfelelő adaptációt hiperbolikus programozási problémákra. A dolgozat ezen
részében azt is megmutatom, hogy miért előnyösebb a hiperbolikus presolve
adaptáció alkalmazása azzal szemben, hogy a modellt Charnes-Cooper transz-
formációval lineáris analóg formára alaḱıtsuk és ezen lineáris presolve-ot alka-
lmazzunk.

A második témakör szintén nevezhető ”preprocessing” eljárásnak, un. skálázó
eljárásokkal foglalkoztam, melyek a lebegőpontos számábrázolásból adódó pon-
tatlanságok csökkentését szolgálják. Szintén szükségesek bizonyos postsolve (re-
skálázó) műveletek, hogy a skálázott, ezáltal jobb numerikus tulajdonságokkal
rendelkező, feladat megoldásából visszanyerjük az eredeti feladat megoldását. A
cél kezdetben itt is a hiperbolikus környezetre való adaptáció volt, majd később
egy saját skálázási módszert ([5]) is késźıtettem és összehasonĺıtottam két már
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ismert eljárással ([4], [36]) teljeśıtmény és futási idő szempontjából. A tesztek
alapján a saját skálázási algoritmusom felveszi a versenyt a meglévő ismert al-
goritmusokkal, a geometriai közép szabályt tekintve pedig az esetek többségénél
jobbnak bizonyult.

Végezetül az egészértékű feladatok megoldásának gyorśıtását tűztem ki célul.
Az alapötlet a [25] munkán alapult, mely elméleti összefüggéseket mutat be az
egészértékű feladatok optimális megoldását illetően. Ezt felhasználva dolgoz-
tam ki egy eljárást sugár-módszer néven, amellyel nem az optimális megoldást
sokkal inkább egy lehetséges megoldást szerettünk volna előálĺıtani, amely a
B&B módszer számára már a kiinduló pontban egy elérhető korlát értékül
szolgál. Az elvárás egy ilyen előkésźıtő algoritmustól, hogy gyors legyen és
lehetőleg minél jobb kiinduló korlátot adjon. A sugár módszert először vé-
letlenszerűen generált tiszta egészértékű feladatokon teszteltem a WINGULF
rendszerbe beéṕıtve ([41]), majd átdolgoztam vegyes egészértékű feladatokra is
valamint egy tesztkörnyezetet fejlesztettem, amely a CPLEX Callable Library-t
használva összehasonĺıtja a futási időket, amikor a CPLEX használja a sugár-
módszer által generált korlátot és amikor nem. Így lehetőség adódott az inter-
netes könyvtárak nagy méretű tesztfájljain is kipróbálni a sugár módszert. Ezen
tesztek alapján elmondható, hogy a saját módszerem átlagosan 21%-kal képes
jav́ıtani a professzionális CPLEX solver teljeśıtményét nagyméretű IP és MIP
problémák esetén.
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Szintén hálás vagyok Prof. Vertse Tamásnak a hasznos konzultációkért.
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Tables

name size σ(A) MinMax modified Mean Geometric

(var-const) σ(Ascaled) Time
(sec)

σ(Ascaled) Time
(sec)

σ(Ascaled) Time
(sec)

ADLITTLE 97-56 2,758E+06 8,941E+02 0,001 6,356E+02 0,000 9,274E+02 0,001
AFIRO 32-27 4,673E+03 5,000E+02 0,000 5,000E+02 0,000 3,105E+01 0,000
AGG 163-488 3,071E+11 9,098E+02 0,059 7,248E+02 0,016 9,822E+03 0,016
BANDM 472-305 2,000E+06 9,551E+02 0,040 9,705E+02 0,016 - -
BEACONFD 262-173 1,578E+06 9,023E+02 0,009 6,961E+02 0,000 8,764E+03 0,016
BNL1 1175-643 8,000E+06 9,363E+02 0,513 4,000E+02 0,047 8,977E+02 0,094
BNL2 3489-2324 6,000E+07 8,502E+02 10,735 9,946E+02 1,139 9,999E+03 4,727
BOEING1 384-351 2,741E+05 6,791E+02 0,049 4,875E+02 0,016 8,254E+02 0,000
BOEING2 143-166 1,000E+07 5,777E+03 0,051 8,069E+03 0,016 - -
BRANDY 249-220 2,546E+05 9,476E+02 0,128 7,094E+02 0,018 7,938E+03 0,000
CAPRI 353-271 3,162E+07 9,823E+03 0,026 9,972E+03 0,531 - -
CZPROB 3523-929 3,000E+06 8,380E+02 0,651 7,843E+02 0,187 - -
D2Q06C 5167-2171 2,500E+07 8,184E+03 2,760 7,765E+03 0,062 - -
D6CUBE 6184-415 1,152E+04 8,524E+03 0,047 4,812E+03 0,062 8,764E+04 0,088
DEGEN2 534-444 4,757E+03 7,546E+02 0,016 2,643E+02 0,000 - -
DEGEN3 1818-1503 4,700E+03 7,907E+02 0,125 2,285E+02 0,109 - -
DFL001 12230-6071 4,808E+08 7,750E+02 26,489 6,666E+02 3,541 9,601E+03 6,693
E226 282-223 5,716E+06 8,285E+02 0,015 9,370E+02 0,000 4,524E+04 0,005
ETAMACRO 688-400 1,200E+06 7,030E+02 0,063 3,406E+02 0,000 7,281E+02 0,010
FFFFF800 854-524 2,823E+07 9,212E+02 0,202 6,479E+02 0,047 9,870E+03 0,093
FINNIS 614-497 4,008E+08 8,385E+03 0,171 5,987E+03 0,015 - -
FIT1D 1026-24 1,890E+05 9,784E+02 0,000 6,600E+02 0,000 8,309E+02 0,000
FIT1P 1677-627 1,890E+05 7,198E+02 0,046 4,018E+02 0,047 9,476E+02 0,047
FIT2D 10500-25 1,626E+05 9,921E+02 0,000 8,703E+02 0,016 1,171E+04 0,010
FIT2P 13525-3000 5,128E+04 9,654E+02 5,897 5,510E+02 2,278 3,402E+03 1,809
GANGES 1681-1309 7,143E+07 9,611E+02 0,608 7,008E+02 0,078 3,766E+02 0,094
GFRD-
PNC

1092-616 4,318E+05 5,276E+02 0,265 6,571E+02 0,032 6,359E+02 0,046

GROW15 645-300 1,167E+06 7,230E+04 0,000 3,285E+04 0,006 - -
GROW22 946-440 1,167E+06 7,230E+04 0,016 3,285E+04 0,015 - -
GROW7 301-140 1,167E+06 7,230E+04 0,000 3,285E+04 0,001 - -
ISRAEL 142-174 9,170E+08 9,186E+04 0,000 3,217E+04 0,015 - -
KB2 41-43 1,290E+03 3,875E+02 0,000 3,608E+02 0,000 8,984E+02 0,000
LOTFI 308-153 1,114E+06 8,385E+02 0,000 1,573E+02 0,000 8,611E+02 0,005

.
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.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
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(var-const) σ(Ascaled) Time
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MAROS-
R7

9408-3136 1,879E+07 9,308E+03 12,137 4,191E+03 1,560 4,715E+04 1,242

MAROS 1443-846 4,009E+08 7,558E+03 0,515 4,295E+03 0,047 9,877E+04 0,040
MODSZK1 1620-688 1,873E+08 6,736E+02 0,390 3,723E+02 0,046 6,499E+02 0,036
NESM 2923-662 1,283E+07 8,954E+02 1,142 7,928E+02 0,172 - -
PEROLD 1376-625 6,940E+08 9,915E+02 0,722 9,941E+02 0,172 5,500E+04 0,064
PILOT-
JA

1988-940 2,926E+12 9,624E+04 0,748 7,247E+04 0,125 - -

PILOT-
WE

2789-722 2,135E+10 9,894E+02 2,909 9,483E+02 0,499 - -

PILOT4 1000-410 1,067E+09 9,867E+03 0,156 8,401E+03 0,047 8,355E+04 0,045
PILOTNOV 2172-975 2,926E+12 9,436E+04 0,858 8,192E+04 0,098 - -
RECIPELP 180-91 1,450E+05 9,965E+02 0,000 7,464E+01 0,000 2,671E+02 0,001
SC105 103-105 2,000E+03 2,000E+02 0,000 2,000E+02 0,000 2,754E+02 0,001
SC205 203-205 2,000E+03 2,000E+02 0,000 2,000E+02 0,000 2,754E+02 0,002
SC50A 48-50 1,700E+03 1,700E+02 0,000 1,700E+02 0,000 2,322E+02 0,001
SC50B 48-50 1,000E+03 3,000E+02 0,000 3,000E+02 0,000 3,000E+02 0,001
SCAGR25 500-471 3,450E+04 6,440E+02 0,025 7,980E+02 0,015 6,686E+02 0,006
SCAGR7 140-129 3,450E+04 6,440E+02 0,003 7,980E+02 0,016 6,686E+02 0,001
SCFXM1 457-330 3,600E+06 6,841E+02 0,020 8,504E+02 0,000 8,549E+03 0,015
SCFXM2 914-660 3,600E+06 9,221E+02 0,212 5,966E+02 0,031 8,155E+04 0,056
SCFXM3 1371-990 3,600E+06 9,221E+02 0,492 5,966E+02 0,078 9,655E+04 0,099
SCORPION 358-388 1,005E+05 5,525E+02 0,011 5,758E+02 0,000 5,840E+02 0,006
SCRS8 1169-490 2,190E+07 9,475E+02 0,417 5,726E+02 0,047 8,733E+03 0,124
SEBA 1028-515 2,406E+05 9,736E+02 0,156 8,076E+02 0,016 7,744E+03 0,031
SHARE1B 225-117 2,936E+07 9,600E+04 0,000 9,802E+04 0,001 - -
SHARE2B 79-96 1,030E+04 2,443E+02 0,000 1,433E+02 0,000 2,064E+02 0,001
SHELL 1775-536 4,750E+04 9,088E+02 0,215 2,179E+02 0,031 2,543E+02 0,022
SHIP04L 2118-402 5,304E+05 8,634E+02 0,043 5,603E+02 0,062 5,636E+03 0,000
SHIP04S 1458-402 5,304E+05 8,634E+02 0,030 5,603E+02 0,047 5,559E+03 0,000
SHIP08L 4283-778 7,235E+05 8,624E+02 0,420 6,244E+02 0,219 8,818E+03 0,031
SHIP08S 2387-778 7,235E+05 8,624E+02 0,230 6,244E+02 0,125 5,127E+03 0,015
SHIP12L 5427-1151 9,006E+05 7,973E+02 1,393 8,000E+02 0,452 4,613E+04 0,062
SHIP12S 2763-1151 9,006E+05 7,973E+02 0,705 8,000E+02 0,234 4,408E+04 0,033
STAIR 467-356 8,984E+06 9,670E+03 0,047 9,645E+03 0,011 - -
STOCFOR1 111-117 5,379E+03 5,736E+02 0,000 5,394E+02 0,000 6,403E+02 0,000
STOCFOR2 2031-2157 7,063E+05 8,655E+02 0,098 2,741E+02 0,187 8,092E+02 0,187
STOCFOR3 15695-16675 7,780E+08 9,520E+02 257,73 9,174E+02 58,906 out of runtime
WOODW 8405-1098 1,000E+05 7,327E+02 1,316 7,071E+02 0,328 5,000E+03 0,092

Table 1: Benchmark of scaling methods on NETLIB files.
Termination condition: SIGMA LIMIT = 103, SIGMA LIMIT = 104,
SIGMA LIMIT = 105.
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File Var. Sel. Strat.
Without Bound With Bound Improvement
Total Best Total Best Node %

pr0 Min. fract. part 4891 4608 4797 4514 94 1,92%
pr1 Min. fract. part 29649 28921 29493 28765 156 0,53%
pr2 Min. fract. part 14929 12908 14929 12908 0 0,00%
pr3 Min. fract. part 4425 4424 3761 3760 664 15,01%
pr4 Min. fract. part 11509 9059 9263 6813 2246 19,52%
pr0 Max. fract. part 1007 805 1007 805 0 0,00%
pr1 Max. fract. part 4339 3921 4339 3921 0 0,00%
pr2 Max. fract. part 7255 6125 7255 6125 0 0,00%
pr3 Max. fract. part 1257 1114 297 154 960 76,37%
pr4 Max. fract. part 5295 5025 4415 4145 880 16,62%
pr0 Most close to 0.5 4181 4033 4181 4033 0 0,00%
pr1 Most close to 0.5 7237 7034 7237 7034 0 0,00%
pr2 Most close to 0.5 7409 6446 7255 6125 154 2,08%
pr3 Most close to 0.5 4285 4284 2785 2784 1500 35,01%
pr4 Most close to 0.5 5215 4832 5215 4832 0 0,00%

Average: 11,14%

Table 2: Problems in size 50x50, node selection strategy: Left to right
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File Var. Sel. Strat.
Without Bound With Bound Improvement
Total Best Total Best Node %

pr0 Min. fract. part 4891 4608 4797 4514 94 1,92%
pr1 Min. fract. part 29649 28921 29493 28765 156 0,53%
pr2 Min. fract. part 14929 12908 14929 12908 0 0,00%
pr3 Min. fract. part 4425 4424 3761 3760 664 15,01%
pr4 Min. fract. part 11509 9059 9263 6813 2246 19,52%
pr0 Max. fract. part 1007 805 1007 805 0 0,00%
pr1 Max. fract. part 4339 3921 4339 3921 0 0,00%
pr2 Max. fract. part 7255 6125 7255 6125 0 0,00%
pr3 Max. fract. part 1257 1114 297 154 960 76,37%
pr4 Max. fract. part 5295 5025 4415 4145 880 16,62%
pr0 Most close to 0.5 4181 4033 4181 4033 0 0,00%
pr1 Most close to 0.5 7237 7034 7237 7034 0 0,00%
pr2 Most close to 0.5 7409 6446 7023 6060 386 5,21%
pr3 Most close to 0.5 4285 4284 2785 2784 1500 35,01%
pr4 Most close to 0.5 3321 1486 3321 1486 0 0,00%

Average: 11,35%

Table 3: Problems in size 50x50, node selection strategy: Right to left
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File Var. Sel. Strat.
Without Bound With Bound Improvement
Total Best Total Best Node %

pr0 Min. fract. part 2019 2011 1257 1249 762 37,74%
pr1 Min. fract. part 3625 3588 625 588 3000 82,76%
pr2 Min. fract. part 2047 1563 1443 959 604 29,51%
pr3 Min. fract. part 1999 1861 1589 1451 410 20,51%
pr4 Min. fract. part 1785 1784 1589 1588 196 10,98%
pr0 Max. fract. part 299 104 299 104 0 0,00%
pr1 Max. fract. part 611 601 255 245 356 58,27%
pr2 Max. fract. part 1861 1568 1369 1076 492 26,44%
pr3 Max. fract. part 355 199 261 105 94 26,48%
pr4 Max. fract. part 983 942 813 772 170 17,29%
pr0 Most close to 0.5 905 889 809 793 96 10,61%
pr1 Most close to 0.5 915 913 563 561 352 38,47%
pr2 Most close to 0.5 1121 888 1121 888 0 0,00%
pr3 Most close to 0.5 887 801 887 801 0 0,00%
pr4 Most close to 0.5 1603 1559 1393 1349 210 13,10%

Average: 24,81%

Table 4: Problems in size 25x25, node selection strategy: Left to right
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for optimization problems”, (conference poster) CSMA 2011, Debrecen
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[7] Anett Rácz ”Adapting LP preprocessing techniques to LFP problems”,
8th International Conference on Applied Informatics - ICAI 2010, Eger,
2010.01.29.
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Az értekezés védésének időpontja: 2012. .......................


