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Abstract

Computer-aided decision support in medical problems is a
prominent research area nowadays. In this PhD thesis, two
approaches are shown to support the medical decisions for
diabetic retinopathy (DR). This disease is one of the most
common causes of blindness in the developed countries. Thus,
timely and precise detection is essential for a large population.
Furthermore, high reliability of the diagnosis is also desired.

The first major contribution of this thesis is an approach to
the early detection of DR on color fundus images. This approach
aims to detect the earliest signs of DR, namely microaneurysms
(MAs). Since MA detection in color fundus images is a very
challenging task, we propose a novel ensemble-based frame-
work to ensure reliable fusion of MA detection output, namely
〈preprocessing method, candidate extractor〉 ensembles. This
approach proved its capabilities in exhaustive evaluation, includ-
ing a competition dedicated to the comparison of MA detectors
(Retinopathy Online Challenge), where it is currently ranked
as first.

The second major contribution of this thesis is an approach
to retinal image grading based on the detailed analysis of color
fundus images. Both the detected anatomical parts and presence
of lesions are considered as features. We use an ensemble of
machine learning classifiers for grading the retinal images based
on the extracted features. As the results on a publicly available
database show, a highly accurate grading system is achieved in
this way.

1 Introduction
Nowadays, computer-aided systems in medical decision making are
of large interest in the research community [1]. Although there is no
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intention to leave out human experts from the diagnostic process, the
evolution of decision support systems reached the point where they
actually influence physicians in their diagnoses, especially in difficult
cases [2]. Thus, high reliability must be ensured for computer-aided
medical decision making systems.

Regarding the nature of decision making, clinical decision support
systems primarily can be categorized as knowledge-based and non-
knowledge-based approaches [1]. Knowledge-based systems are direct
implementations of clinical protocols, thus, their suggestions are based
on a predefined set of rules. Opposed to that, non-knowledge-based
approaches extract decision rules using sophisticated artificial intelli-
gence tools like machine learning. Thus, ensuring high reliability for
non-knowledge-based systems is more challenging for computer science
research than to medicine.

In this thesis, two non-knowledge-based automatic decision-making
approaches to diabetic retinopathy (DR) grading are presented. DR is
a consequence of diabetes mellitus which manifests itself in the retina.
This disease is one of the most frequent causes of visual impairment in
developed countries and is the leading cause of new cases of blindness
in the working age population [3]. In 2011, 366 million people are
diagnosed with diabetes and a further 280 million people are having risk
to develop it [4]. At any point in time, approximately 40% of diabetic
persons have diabetic retinopathy, of which an estimated 5% have the
sight-threatening form of this disease. Altogether, every day nearly
75 people go blind as a consequence of DR even though treatment is
available [5].

The retina of the human eye is a layered tissue, where the perceived
light is conversed into neural signals [6]. The neural signals are sent
to the brain via the fibres of the optic nerve. Thus, retina plays an
essential role in the human vision. As a natural consequence of its
purpose, the retina must be optically transparent [6]. This property
makes it possible to use non-invasive imaging techniques to observe the

2



condition of the retinal tissue [6]. See Figure 1 for a visual presentation
of the path of the light through the eye.

Figure 1: The path of the light through the eye. Courtesy of the
UBC Department of Ophthalmology and Visual Sciences, Vancouver,
Canada. Source: http://www.ophthalmology.ubc.ca/facilities/
images/section-f/img-03.jpg.

Retinal imaging is widely used in the diagnostics and the regular
controls of the consequent treatment of various eye diseases. The most
widely used retinal imaging devices are fundus cameras, which are based
on the invention of Gullstrand [6] [7]. Nowadays, there are techniques
which possess better properties to support medical decision-making
[6] (e.g. stereo fundus photography [8], optical coherence tomography
[9], ultra-wide field retinal imaging [10]). However, due to its cost-
effectiveness, color fundus images are widely used in medical practice.
For a sample color fundus image, see Figure 2.

Timely detection, organized and practised screening programs are
the mainstay of identifying patients at risk to be effected by any
symptoms of DR. Several countries elaborated nation-wide or region-
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Figure 2: A sample fundus image from the DiaretDB1 database.

wide programs to fulfil this goal. In the United States [11] [12], in the
United Kingdom [13] and in The Netherlands [14] there are digital
photography acquisition and reader centre sites already available in
daily routine. Color digital retinal images are captured at service sites
even outside of health care settings and data will then be transferred to
central locations, where they are double read and evaluated by specially
trained graders. Further health provision of the patient depends upon
the outcome of the grading process.

Automated grading of DR based on the detection of the charac-
teristic lesions would safely reduce the burden of manual grading in
screening programs. Promising results on higher sensitivity (the ratio
of the correctly identified patients having DR in the investigated popu-
lation) compared with manual graders have already been reported in
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[15] for patients having referable diabetic retinopathy. Although the
overall specificity (the ratio of correctly identified patients not showing
signs of DR in the investigated population) of automated grading was
lower than the manual analysis, remarkable financial savings could be
achieved by reducing the grading workload. Screening programs can
be organized to reduce the risk of the disease within the population.
Though with the automated screening systems we have to make a com-
promise between sensitivity and specificity, an alternate approach with
high performance is currently not available to provide mass screening.
To evaluate automatic screening systems, they should be compared
to human experts routinely involved. Note that, manual grading is
imperfect, since graders missed more than 5% of the cases of referable
DR in a study [15].

The process of analysing fundus images can be performed through a
series of steps. In [16], the following steps were identified: preprocessing,
localization and segmentation of the optic disc, segmentation of the
retinal vasculature, localization of the macula and fovea, detection of
the signs of DR (e.g. exudates, microaneurysm, haemorrhages). The
anatomical parts of the retina can be seen in Figure 3, while a sample
for the aforementioned lesions is shown in Figure 4. While there is a
broad literature of this topic, we only deal with those aspects which
are in the scope of the thesis. For the interested readers, excellent
reviews are available in [16] and [17].

With an automated decision support of the grading process, wider
access could be provided to the service and improvements could be
realized at personal and community DR care level. Graders in DR
reading centres are taught to recognize patterns which represent lesions
like microaneurysm, dot and blot haemorrhages, lipid exudates and
cotton wool spots. With the implementation of computer aided decision
support algorithms, the detection of the above mentioned lesions would
be theoretically possible. In the past, much effort has been made
by different research groups to develop advanced algorithms with
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Figure 3: A sample fundus image with the main anatomical parts
annotated.

sensitivity and specificity close to that of human graders [16].
A common way to improve reliability in machine learning based ap-

plications is to use ensemble-based approaches [18]. Ensemble systems
combine the output of multiple learners with a specific strategy. In this
thesis, two ensemble-based approaches are proposed to DR screening.

First, a method for the early detection of DR is presented. The
key to early detection is the timely recognition of a lesion called
microaneurysm (MA). Since MA detectors provide the spatial locations
of MA candidates as output, the application of standard ensemble-
based strategies do not provide sufficient solution, as we can see it later
on. Thus, a spatial combination method is presented in this thesis.
This approach is based on the novel concept of 〈preprocessing method,
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(a) Exudate (b) Microa-
neurysm

(c) Haemorrhage

Figure 4: Examples of retinal lesions caused by diabetic retinopathy.

candidate extractor〉 (〈PP, CE〉 for short) ensembles, which is shown to
be effective in improving the sensitivity of MA candidate extraction and
with the use of spatial voting, the false detections are also suppressed.
For the creation of 〈PP, CE〉 ensembles, two approaches are introduced.
First, a search-based selection approach is presented based on the
performance of the ensembles on a training set. On the other hand,
we investigate the effect of using context-dependent information and
use the information to assign weights to the participating 〈PP, CE〉
pairs in the ensembles. Experimental results show superiority over
individual approaches for both cases.

As the second main focus of the thesis, an ensemble-based approach
to the grading of DR is also proposed. This approach is based on
the output of several retinal image processing algorithms, such as le-
sion detection (microaneurysms, exudates), anatomical parts (macula,
optic disc, vascular system), image features (diameter of the region-
of-interest) and global DR descriptors (AM/FM filtering, quality as-
sessment). From the output of the aforementioned algorithms, certain
features are extracted and an ensemble of classifiers is trained. As it
can be seen later, reassuring results are obtained using this technique
for DR grading.

The main contributions (also including the corresponding publica-
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tions) of the thesis can be summarized as follows:

1. The introduction of 〈PP, CE〉 ensembles [19].

2. A 〈PP, CE〉 ensemble framework for microaneurysm detection
[19], [20], [21], [22], [23].

3. A selection approach for 〈PP, CE〉 ensembles [19], [24], [25], [26],
[27].

4. A context-adaptive weighting approach for 〈PP, CE〉 ensembles
[28], [29].

5. A classifier ensemble-based approach to diabetic retinopathy
grading [30].

6. A macula detection algorithm used in the diabetic retinopathy
grading approach [31].

7. A method to recognize highly diseased cases used in the diabetic
retinopathy grading approach [32], [33], [34].

While the thesis is written in plural form, the author has a principal
contribution to the presented results.

The rest of the thesis is organized in the following way: section 2
provides a brief summary on the basic concepts and methodology used
in this thesis. Sections 3 and 4 contain the main body of the thesis by
describing the proposed early and final decision making approaches,
respectively. Finally, conclusions are drawn in section 5.
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2 Basic concepts and methodology
Most color retinal image processing algorithms rely on the processing
of the green channel of the RGB image [17]. As it can be seen in Figure
5, the green channel has the highest contrast and visual information
content among the three. In the rest of the thesis, only the green
channel of the retinal image is used for processing.

(a) Color (b) Red

(c) Green (d) Blue

Figure 5: Channels of a sample image from the DiaretDB1 [35]
database.
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Due to the special properties of fundus photography, the acquired
image contains several irrelevant background pixels. Thus, the region
of interest (ROI) for each image is needed to be extracted, which
excludes these irrelevant outer areas. The ROI of the sample image
shown in Figure 2 extracted by the method presented in [36] can be
seen in Figure 6.

Figure 6: Region of interest (ROI, shown in white) for the sample
image shown in Figure 2.

In the rest of the thesis, for all retinal image analysis methods, the
pixels outside the ROI are excluded from further processing.
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2.1 Color fundus image databases
In this section, we list the test databases and give the characteristics
of the color fundus images used in this thesis.

2.1.1 Retinopathy Online Challenge (ROC) database

Retinopathy Online Challenge (ROC) [37] is a worldwide online compe-
tition dedicated to measure the accuracy of microaneurysm detectors.
The ROC database consists of 50 training and 50 test images having
different resolutions (768× 576, 1058× 1061 and 1389× 1383 pixels),
45◦ field-of-view (FOV) and JPEG compression. The average number
of MAs for the training and test sets are 6.72 and 6.86, respectively.
There are 13 and 10 images of the training and test sets, respectively,
where no MAs are marked by the clinical experts.

2.1.2 DiaretDB0 database

The DiaretDB0 [38] database contains 130 losslessly compressed color
fundus images with a resolution of 1500× 1152 pixels and 50◦ FOV.

2.1.3 DiaretDB1 2.1 database

The DiaretDB1 2.1 [35] database contains 28 losslessly compressed
training and 61 test images, respectively with a resolution of 1500×1152
pixels and 50◦ FOV. The average number of MAs for the training and
test sets are 4.34 and 3.91, respectively. There are 15 and 39 images of
the training and test sets, respectively, where no MAs are marked by
the experts.
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2.1.4 Database provided by Moorfields Eye Hospital, UK

This database consists of 60 losslessly compressed images with a reso-
lution 3072× 2048 pixels and 45◦ FOV. The average number of MAs
for the training and test sets are 8.67 and 8.87, respectively. There are
10 and 8 images in the training and test sets, respectively, where no
MAs are marked by the experts.

2.1.5 Messidor database

This database consists of 1200 losslessly compressed images with 45◦
FOV and different resolutions (440× 960, 2240× 1488 and 2304× 1536
pixels). For each image, a grading score ranging from R0 to R3 is also
provided. These grades correspond to the following clinical conditions:
a patient with an R0 grade has no DR. R1 and R2 are mild and severe
cases of non-proliferative retinopathy, respectively. Finally, R3 is the
most serious condition (proliferative retinopathy). The grading is based
on the appearance of MAs, haemorrhages and neovascularization. The
corresponding proportion of the images in the Messidor dataset: 540
R0 (46%), 153 R1 (12.75%), 247 R2 (20.58%) and 260 R3 (21.67%).
This database is kindly provided by the Messidor program partners
(see http://messidor.crihan.fr).

2.1.6 DRIVE database

The DRIVE [39] database contains 40 JPEG-compressed color fundus
images with 768× 584 pixels resolution and 45◦ FOV.
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3 Ensemble-based methods for the early
detection of diabetic retinopathy

Microaneurysms (MAs) are normally the earliest signs of DR, so the
detection of these lesions is essential in an efficient screening program
[40]. MAs appear as small circular dark spots on the surface of the
retina, as it can be observed in Figure 7. The most common place of
occurrence of MAs is near thin vessels, though they cannot actually lie
on the vessels.

MA detection is based on the detailed analysis of digital fundus
images. State-of-the-art detection approaches usually start with the
preprocessing of images, which is followed by candidate extraction.
Finally, the extracted candidates are classified as MAs or non-MAs.
The reason to separate the latter two steps is that the pixel-wise
classification of the whole image would be very resource-demanding.

The vast majority of microaneurysm detectors can be organized
into two categories: the ones based on mathematical morphology, and
the others based on shape analysis with non-morphological tools. The
largest family of morphology-based candidate extractors are originated
from Lay [41] and Baudion [42]. These methods extract the vascular
system by taking the maximum of multiple top-hat transformations
with rotated linear structuring elements and subtract the resulting
image from the original one. The candidates are then extracted by
thresholding after applying a Gaussian filter. Oien et al. [43] was the
first to apply similar techniques to color images. Spencer et al. [44]
proposed a preceding shade correction step to this algorithm, while
Frame et al. [45], Mendonca et al. [46], Hipwell et al. [47], Yang et
al. [48], Cree et al. [49], Streeter et al. [50] and Fleming et al. [51]
proposed modified variants. Mendonca et al. [46], Hipwell et al. [47],
Yang et al. [48] and Fleming et al. [51] introduced an extension to this
technique to decrease the number of false candidates. Niemeijer et al.
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Figure 7: A sample color fundus image from the ROC database [37]
with a microaneurysm highlighted.

[52] also considers a complementary machine learning-based candidate
extractor and merge their output. Walter et al. [53] presented a
different morphology-based approach, which relies on diameter closing,
while in [54], Ravishankar applied morphological filling for establishing
a candidate extraction algorithm. Other morphology-based approaches
have been proposed in [55], [56] and [57].

The family of the non-morphological shape analysis-based ap-
proaches are more diverse. Marino et al. [58] and Bhalerao et al.
[59] use a Gaussian mask to match the shape of MAs, while Zhang
et al. [60], and Quellec et al. [61] apply multiple Gaussian masks for
this purpose. Hahn et al. [62] consider the red/green ratio intensity
values and select MA-candidates by applying a shape factor. Other
circularity-based operators are used in [63] (double-ring filter), [64]
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(circular Hough transformation) and [65] (Radon cliff operator).
There are approaches which cannot fit in any of the categories

mentioned above, but also worth considering in an ensemble-based
system. Grisan et al. [66] extracted candidates based on their densities
after a local thresholding. Balasubramanian et al. [67] applied grey-
level grouping and proposed an automatic seed generation technique
to tackle this problem. Moat operator and region growing are applied
in [68] and [69], respectively. Pallawala et al. introduced a normalized
cut-based local segmentation technique. Gardner et al. [70] trained an
artificial neural network to recognize different retinal features, including
microaneurysms. Lázár et al. [71] presented an approach relying on
the strength of multiple cross-sectional profiles across the image.

Figure 8: Common steps of microaneurysm detection.

One way to ensure high reliability and raise accuracy in a detector
is to consider ensemble-based systems, which have been proven to be
efficient in several fields [18]. However, the usual ensemble techniques
aim to combine class labels or class membership likelihoods which
cannot be adopted in our case. In MA detection, detectors provide
spatial coordinates as centers of potential MA candidates. The use of
well-known ensemble techniques would require a classification of each
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pixel, which can be misleading in our context, since different algorithms
extract MAs with different approaches and the MA centers may not
coincide exactly. To overcome this difficulty, we gather spatially close
MA candidates of the individual detectors and apply a voting scheme
to them.

In [72], Niemeijer et al. showed that the fusion of the results of the
several MA detectors leads to an increased average sensitivity measured
at seven predefined false positive rates. In this section, we propose
three approaches to improve MA detection on the combination of the
internal components of the detectors not only on their output as in [72].
The approaches are based on the novel concept of 〈PP, CE〉 ensembles.

To present the related results in details, first, a method using
majority voting of candidate extraction algorithms is proposed in
section 3.3. It will become clear that the results are improved using
these techniques, but the sensitivity of the approach is too low and the
number of false detections are still high. The corresponding results are
also published in [24], [25] and [26].

The second approach (section 3.4) extends the aforementioned tech-
nique to tackle its shortcomings by combining preprocessing methods
ans candidate extractors. To suppress the number of false detections,
ensemble selection and voting are applied. Experimental evaluation of
this approach is also performed, where it is shown to be superior over
individual MA detectors. The corresponding results are also published
in [19], [20], [21], [22], [23] and [27]. We investigate the performance
of this approach in recognizing MAs for images where DR present, as
well.

Moreover, an adaptive weighting technique to 〈PP, CE〉 ensembles
is also presented in section 3.4. The weights assigned to ensemble mem-
bers based on spatial, visual and performance information measured
on a training set. More on these results are given in [28] and [29].

The rest of section 3 is organized as follows: in section 3.1 the novel
concept of 〈PP, CE〉 ensembles are introduced. Section 3.2 contains a
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brief description of the algorithms used in this section. The creation
of ensembles based containing only candidate extractor algorithms is
described in section 3.3. Section 3.4 is devoted to the search-based
selection of 〈PP, CE〉 pairs to build up the ensemble, while section 3.6
introduces a context-aware weighting approach for such ensembles.

3.1 〈Preprocessing method, candidate extractor〉
(〈PP, CE〉) ensembles

In this section, we provide some theoretical foundation for the creation
of ensembles containing preprocessing methods and MA candidate
extractors for the easier and precise reference in the latter parts of the
thesis. We emphasize the similarities between the introduced terms and
those used in the literature of classifier ensembles [18]. The concepts
introduced here were used in the publications [19], [25], [26], [27] of
the author.

Without the loss of generality we will work with 8-bit intensity
images of size k × l, that is, a digital image I is defined as:

I : {1, . . . , k} × {1, . . . , l} → [0, . . . , 255] . (1)

We will form ensembles by merging the output of different candidate
extractors. While the number of such algorithms are limited for certain
cases, we permit replacing the input images if those are modifications
of the same image applying intensity-based transforms. That is, an
image transform f has the general form f : I → I ′, where I and I ′ are
digital images.

However, in object detection problems only such transforms are
allowed that do not modify the spatial locations of the desired objects
(e.g. lesions). Thus, we allow transforms that aim is to enhance the
appearance of the desired objects with trying to avoid the enhancement
of the others. These allowed transforms are referred as preprocessing
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methods, and we will also follow this terminology. In general, it is
meaningless to give a rigorous definition for preprocessing algorithms or
to describe precisely whether we can find an allowed transform between
two images.

Despite these difficulties, from a practical point of view we give the
following intuitive definition for the preprocessed variants of an image
I:

Definition 1 Let I and I ′ be two digital images. I and I ′ are
replacable, if there exists an allowed image transform between them.
The set of all replaceable variants of I is denoted by I. Note that, we
also let I ∈ I.

Definition 2 Let I be a digital image. A candidate extractor algorithm
C is defined as:

C : I → P ({1, . . . , k} × {1, . . . , l}) , (2)

where P (X) denotes the power set of a set X. The set of all candidate
extractors is denoted by C.

In the next step, we let preprocessing methods and candidate
extractor algorithms to put together to set up ensembles.

Definition 3 Let I be a digital image. A finite set E ⊆ I × C is
called a 〈preprocessing method, candidate extractor〉 ensemble (〈PP,
CE〉 for short) . The candidate set of the ensemble E is defined as
EC = ⋃

(I′,C′)∈E
C ′(I ′).

That is, we have an ensemble pool E of size |I||C|. Then, we can
put together specific preprocessing methods and candidate extractors,
where candidates of different candidate extractors being close to each
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other will be collected and the will vote for a lesion in the corresponding
position. In general, we could consider any distance measure between
two candidates. However, for our current purposes we define this
relation with the help of the 2D Euclidean metric.

Definition 4 Let c1, c2 ∈ {1, . . . , k} × {1, . . . , l}. We say that c1 ∼=
c2, if ||c1 − c2||2 < d with some distance threshold d ∈ R≥0, where ||.||2
stands for the Euclidean norm.

Now we can assign a confidence value to each candidate of an
ensemble E with collecting the close candidates of other ensemble
members.

Definition 5 Let I be a digital image, E be a 〈PP, CE〉 ensemble,
and c ∈ EC is its candidate. Then, the confidence level of c is defined
as:

confE(c) = |{(C ′, I ′) ∈ E : ∃c′ ∈ C ′(I ′) such that c ∼= c′}| / |E|. (3)

Moreover, we define the α-level candidates of E as:

ECα = {c ∈ EC : confE(c) ≥ α}, (4)

where 0 ≤ α ≤ 1.

The level of confidence for a candidate is analogous to the number
of votes in the majority voting terminology. The confidence level serves
as a membership function for EC. Also note that the candidate level
of each candidate of a 〈PP, CE〉 ensemble in the interval [1/|E|, 1].
Note that, majority voting [18] can be accomplished in this context by
setting α = 0.5.

Now we set up a framework to measure the accuracy of the possible
ensembles to be able to select the appropriate ones for practical prob-
lems. We start with making the decision whether the candidates found
by a specific extractor are true or false ones regarding some ground
truth.
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Definition 6 Let REF ⊆ {1, . . . , k} × {1, . . . , l} be a reference set
of candidates for an image I. For the classification of each candidate
c of an ensemble E ⊆ I × C on the same image regarding REF we
apply the following:

• c is a true positive (TP), if ∃cref ∈ REF such that c ∼= cref .

• c is a false positive (FP), if ¬∃cref ∈ REF such that c ∼= cref .

Regarding a candidate cref of REF , we apply:

• cref is a false negative (FN), if ¬∃c ∈ EC such that c ∼= cref .

All pixels in {1, . . . , k} × {1, . . . , l}\REF ∪ EC are true negatives
(TN).

Note that, REF is usually a manually annotated set created by
experts of the application field. Now, we can introduce some classic
measures to describe the performance of an ensemble.

Definition 7 To measure the performance of an ensemble E regarding
a reference set REF we use the the following descriptors [73]:

• sensitivity (SEN):

SEN = TP

TP + FP
, (5)

• specificity (SPE):

SPE = TN

FN + TN
, (6)

• false positive rate (FPR):

FPR = 1− SPE, (7)
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• positive likelihood ratio (PLR):

PLR = TP

FP
, (8)

• positive predictive value (PPV):

PPV = TP

TP + FN
, (9)

• F-Score:

F-Score = 2 · SEN · PPV
SEN + PPV

, (10)

• average false positives per image (FPI):

FPI = FP

number of images in the database , (11)

• accuracy (ACC):

ACC = TP + TN

FP + FN + TN + FP
. (12)

Definition 8 Let I be an image, E be an ensemble and REF a ref-
erence candidate set. For a confidence level 0 ≤ α ≤ 1 we apply the
following (see definition 6):

• c is α-true positive (TPα), if c is TP and c ∈ ECα,

• c is a α-false positive (FPα), if c is FP and c ∈ ECα,

Regarding a candidate cref of REF , we apply:

• cref is α-false negative (FNα), if ¬∃c ∈ ECα with c ∼= cref .
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All pixels in {1, . . . , k} × {1, . . . , l}\REF ∪ ECα are α-true negative
(TNα).

Definition 9 To measure the performance of an ensemble E regarding
an image I, a reference set REF and a confidence level α we use the
the following descriptors:

• α-sensitivity (SENα):

SENα = TPα
TPα + FPα

, (13)

• average false positives per image for the α confidence level
(FPIα):

FPIα = FPα
number of images , (14)

• competition performance metric (CPM) [37]:

CPM = 1
|G|
·
∑
g∈G
{SENα|FPIα = g} , (15)

where G =
{1

8 ,
1
4 ,

1
2 , 1, 2, 4, 8

}
.

Definition 10 To measure the diversity of two candidate sets EC and
EC ′ regarding a reference set REF , we define the following diversity
measures based on [74]:

• disagreement measure (DIS):

DIS = n01 + n10, (16)
where n10 and n01 are the number of TP candidates c where
c ∈ EC∧@c′ ∈ EC ′ with c ∼= c′ and the number of TP candidates
c′ with c′ ∈ EC ′ ∧ @c ∈ EC, where c ∼= c′, respectively.
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• double fault measure (DF):

DF = n00, (17)

where n00 is the number of TP candidates c, where c /∈ EC∧@c′ ∈
EC ′ with c ∼= c′.

3.2 Algorithms used for microaneurysm detector
ensembles

In this section, a brief description of the algorithm used for the creation
of MA detector ensembles is described. Before presenting our main
results, we review the preprocessing methods and candidate extractors
that will give the basis for ensemble creation.

3.2.1 Preprocessing methods

This section describes the selected preprocessing methods, which we
consider to be applied before executing MA candidate extraction.
The selection of the preprocessing method and candidate extractor
components for this framework is a challenging task. Comparison of
preprocessing methods dedicated to microaneurysm detection has not
been published yet. Since preprocessing methods need to be highly
interchangeable, we must select algorithms which can be used before
any candidate extractor and do not change the characteristics of the
original images (unlike e.g. shade correction [75]). Thus, all these
preprocessing methods can be considered as allowed transformations in
the sense of Definition 1. We also found some techniques to generate
too much noise for MA detection (histogram equalization [75], adaptive
histogram equalization [75] or color normalization [75]). Thus, we have
selected methods which are well-known in medical image processing
and preserve image characteristics. More specifically, we have chosen a
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preprocessing method proposed for an MA detector by Walter et al. [76],
a widely used medical image preprocessing method, Contrast Limited
Adaptive Histogram Equalization (CLAHE) [77], a vessel removal
and inpainting technique, which has proved to be successful in other
retina-based detection algorithms [54], and illumination equalization
to suppress the vignetting effect of fundus images [78]. Naturally,
the proposed system can be improved in the future with adding new
preprocessing methods.

3.2.1.1 No preprocessing (NO) We consider the results of the
candidate extractors obtained for the original images without any
preprocessing in the sense of Definition 1. That is, we formally consider
a "No preprocessing" operation, as well. A sample image without
preprocessing can be seen in Figure 9.

Figure 9: A sample fundus image from the DiaretDB1 database with
no preprocessing applied.
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3.2.1.2 Walter-Klein contrast enhancement (WK) [76] This
preprocessing method aims to enhance the contrast of fundus images
by applying a gray level transformation using the following operator:

f ′ (x, y) =



1
2 (f ′max − f ′min)

(µ− fmin)r · (f (x, y)− fmin)r + f ′min, f (x, y) ≤ µ,

1
2 (f ′min − f ′max)

(µ− fmax)r
· (f (x, y)− fmax)r + f ′max, f (x, y) ≥ µ,

(18)
where {fmin, . . . , fmax}, {f ′min, . . . , f ′max} are the minimal and max-
imal intensity levels of the original and the enhanced image, re-
spectively, f (x, y) is the intensity level for the pixels (x, y) with
0 ≤ x ≤ k, 0 ≤ y ≤ l, µ is the mean value of the original grayscale im-
age and r ∈ R is a transition parameter. A sample image preprocessed
with Walter-Klein contrast enhancement can be seen in Figure 10.

3.2.1.3 Contrast limited adaptive histogram equalization
(CL) [77] Contrast limited adaptive histogram equalization (CLAHE)
is a popular technique in biomedical image processing, since it is very
effective in making the salient parts more visible. The image is split
into disjoint regions, and in each region a local histogram equalization is
applied. Then, the boundaries between the regions are eliminated with
a bilinear interpolation. A sample image preprocessed with CLAHE
can be seen in Figure 11.

3.2.1.4 Gray-world normalization (GN) [75] Each pixel on
the green channel of the image is transformed in the following way:

f ′ (x, y) = f (x, y)
µ

, (19)
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Figure 10: A sample fundus image from the DiaretDB1 database
preprocessed with the Walter-Klein contrast enhancement.

where f ′ and f are the respective new and original pixel intensities
for the pixels (x, y) with 0 ≤ x ≤ k, 0 ≤ y ≤ l, and µ is the average
intensity of the green channel. A sample image preprocessed with
gray-world normalization can be seen in Figure 12.

3.2.1.5 Intensity adjustment (IA) [79] This preprocessing
method enhances the contrast of a grayscale image by saturating
the lowest and highest 1% of the intensity values. A sample image
preprocessed with intensity adjustment can be seen in Figure 13.

3.2.1.6 Illumination equalization (IE) [75] This preprocessing
method aims to reduce the vignetting effect caused by uneven illumi-
nation of retinal images. Each pixel intensity is set according to the
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Figure 11: A sample fundus image from the DiaretDB1 database
preprocessed with CLAHE.

following formula:

f ′ (x, y) = f (x, y) + µd − µl, (20)

where f (x, y) , f ′ (x, y) are the original and the new pixel intensity
values for the pixels (x, y) with 0 ≤ x ≤ k, 0 ≤ y ≤ l, respectively, µd
is the desired average intensity and µl is the local average intensity.
MAs appearing on the border of the retina are enhanced by this step.
A sample image preprocessed with illumination equalization can be
seen in Figure 14.

3.2.1.7 Vessel removal and extrapolation (VR) [54] We in-
vestigate the effect of processing images with the complete vessel system
being removed based on the idea proposed in [54]. We extrapolate
the missing parts to fill in the holes caused by the removal using the
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Figure 12: A sample fundus image from the DiaretDB1 database
preprocessed with gray-world normalization.

inpainting algorithm presented in [80]. MAs appearing near vessels be-
come more easily detectable in this way. A sample image preprocessed
with vessel removal and extrapolation can be seen in Figure 15.

3.2.1.8 Background subtraction of retinal blood vessels (BS)
[81] This method is recommended for vascular system detection.
Blood vessels on retinal images show similar local appearance to MAs.
This approach considers the vessel system as the foreground of the im-
age. The background is extracted by applying an averaging filter, which
is followed by threshold averaging for smoothing. The background
image is then subtracted from the original image. A sample image
preprocessed with background subtraction of retinal blood vessels can
be seen in Figure 16.
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Figure 13: A sample fundus image from the DiaretDB1 database
preprocessed with intensity adjustment.

3.2.1.9 Histogram equalization (HE) [75] This preprocessing
method aims to enhance the global contrast of the image by redistribut-
ing the intensity values of the image. First, the accumulated normalized
histogram of the image is created. Then, the histogram is transformed
to reflect uniform distribution. A sample image preprocessed with
histogram equalization can be seen in Figure 17.

3.2.2 Candidate extractors

Candidate extraction is a process which aims to detect any objects in
the image showing MA-like characteristics. Individual MA detectors
consider different principles to extract MA candidates. In this section,
we provide a brief overview of the candidate extractors involved in our
analysis. Again, just as for preprocessing methods, adding new MA
candidate extractors may lead to further improvement in the future.
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Figure 14: A sample fundus image from the DiaretDB1 database
preprocessed with illumination equalization.

3.2.2.1 Walter et al. [53] Candidate extraction is accomplished
by grayscale diameter closing. That is, this method aims to find all
sufficiently small dark patterns on the green channel. Finally, a double
threshold is applied.

3.2.2.2 Spencer et al. [44] From the input fundus image, the
vascular map is extracted by applying twelve morphological top-hat
transformations with twelve rotated linear structuring elements (with
a radial resolution 15 ◦). Then, the vascular map is subtracted from
the input image, which is followed by the application of a Gaussian
matched filter. The resulting image is then binarized with a fixed
threshold. Since the extracted candidates are not precise representa-
tions of the actual lesions, a region growing step is also applied to
them. While the original paper [44] aims to detect MAs on fluorescein
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Figure 15: A sample fundus image from the DiaretDB1 database
preprocessed with vessel removal and extrapolation.

angiographic images, our implementation was based on the modified
version published by Fleming et al. [51].

3.2.2.3 Circular Hough-transformation [64] Following the
idea presented in [64], we established an approach based on the detec-
tion of small circular spots in the image. Candidates are obtained by
detecting circles on the images using circular Hough transformation.
With this technique, a set of circular objects can be extracted from the
image.

3.2.2.4 Zhang et al. [60] In order to extract candidates, this
method constructs a maximal correlation response image for the input
retinal image. This is accomplished by considering the maximal cor-
relation coefficient with five Gaussian masks with different standard
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Figure 16: A sample fundus image from the DiaretDB1 database
preprocessed with background subtraction of retinal blood vessels.

deviations for each pixel. The maximal correlation response image
is thresholded with a fixed threshold value to obtain the candidates.
Vessel detection and region growing is applied to reduce the number of
candidates, and to determine their precise size, respectively.

3.2.2.5 Lázár et al. [71] Pixel-wise cross-section profiles with
multiple orientations are used to construct a multi-directional height
map. This map assigns a set of height values that describe the distinc-
tion of the pixel from its surroundings in a particular direction. In a
modified multilevel attribute opening step, a score map is constructed
from which the MAs are extracted by thresholding.
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Figure 17: A sample fundus image from the DiaretDB1 database
preprocessed with histogram equalization.

3.3 Majority voting of microaneurysm candidate
extractors

In this section, we propose an ensemble-based approach to MA detection
to suppress the errors of individual algorithms. The proposed process
consists of three main stages: first, we extract MA candidates from
fundus images. For this task, we select four state-of-the-art approaches,
namely the candidate extractor of Walter et al. (section 3.2.2.1),
Spencer et al. (section 3.2.2.2), the circular Hough transformation
based approach (section 3.2.2.3) and the Lázár et al. (section 3.2.2.5)
algorithm. In the second phase, we combine the results provided by the
four candidate extractors. This combination framework can be regarded
as a 〈PP, CE〉 ensemble E, where C = {Walter, Spencer,Hough,Lázár}
(see (2) and I = {I} (see definition 1). That is, the set of preprocessing
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methods include the identical transform (”No preprocessing”) only.
Finally, the number of candidates are reduced with a voting scheme. We
also investigate the effect of using different number of votes for selection.
Finally, we introduce a novel machine-learning based algorithm to
classify the candidates. As experiments show, with this ensemble
method state-of-the-art microaneurysm candidate extractors can be
outperformed.

The approach proposed in this section is the work of the author
and published in [24].

3.3.1 Combining the candidate extractors

As the most straightforward measure, we aim to raise the positive
likelihood ratio (PLR, see (8)) using an ensemble. It is important
to use diverse candidate extractors, that is, to reduce the number
of false positives efficiently and keep only those candidates on which
multiple methods agree. In Section 3.3.2 we show the diversity of
the methods measured. For the proper comparison of the candidates
extracted by the individual approaches, we will have to merge them if
they are sufficiently close to each other, as defined in Definitions 4 and
5, respectively.

3.3.2 Diversity of the candidate extractors

The pairwise diversity of the classifiers can be measured by the dis-
agreement (DIS, see (16)) and double fault (DF , see (17)) measures.
DIS sums the cases where the extractors disagree, but one of them
is correct, while the DF measure count the candidates, where both
extractors agree and both are incorrect. For our aims, high DIS values
and low DF values are ideal. As it can be seen in Table 1, the selected
candidate extractors are quite diverse.
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Walter Spencer Hough Lázár DIS DF
x x 0,73 0,09
x x 0,77 0,04
x x 0,49 0,10

x x 0,79 0,06
x x 0,69 0,14

x x 0,74 0,12

Table 1: Pairwise diversity of the microaneurysm candidate extractors.

3.3.3 Voting on the candidates

Each individual algorithm produces an initial set of microaneurysm
candidates. Then, we establish a set of final candidates ECα through
majority voting. The voting procedure has the following steps formal-
ized by Definition 4:

1. For each candidate c provided by one of the algorithms, check
whether there is another candidate detected by another algorithm
within a distance r ∈ R≥0 from c.

2. Let sum be the number of candidates satisfying the above proxim-
ity criterion and remove all these candidates from their respective
initial sets.

3. If sum ≥ α, then add the centroid of the candidates found by
step 2 to the final set of candidates EC.

4. Repeat the procedure until all the initial sets become empty.

3.3.4 Candidate classification

To improve the PLR value, we use a consequent classification step,
which is based on certain unique features of MAs. Candidates are
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classified as actual MAs or non-MAs in two steps. First, we train our
approach with several fixed size (e.g. 21 × 21 pixels) subimages for
both microaneurysm and random non-microaneurysm examples. Then,
for each pixel of the examples, we establish a kernel density estimator
for both classes. After the training step, we can classify new instances.
We establish a new instance by producing a subimage of the candidate
pixel and its neighbourhood with the same size as the training step.
The classification procedure is then the following: for each pixel of the
instance, we compare the probability provided by the kernel density
estimators for both classes. Then, the candidate is considered as a
microaneurysm if more comparisons confirm that this is a positive
example.

3.3.5 Results and limitations

We have tested our approach on 50 images selected from the Retinopa-
thy Online Challenge database (see section 2.1.1). To increase the
PLR, we consider those candidates only, which have at least α = 0.5
confidence as given in definition 5. Furthermore, we also considered
higher α values to select candidates having more votes from the can-
didate extractors. As it can be seen in Table 2, PLR increases with
the level of confidence. It is also clearly visible that the ensemble
system (regardless of the number of votes) outperforms the individual
candidate extractors. The largest PLR value has been found in the
case α = 1, that is, when all the 4 votes were assigned to the candidates.
The number of candidates decreases with the raise of the votes, while
the positive likelihood ratio shows increases.

It is also interesting to compare our approach to a state-of-the-art
microaneurysm detector. Mizutani et al. [63] use a similar candidate
extraction algorithm as the Spencer-Frame method, but it relies on a
different approach for the final candidate classification. The ensemble
system outperforms this algorithm (see Table 3) without even classifying
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Algorithm Candidates TP FP PLR
Walter 2831 110 2721 0,040
Spencer 5821 115 5706 0,020
Hough 15664 94 15570 0,006
Lázár 11040 197 10843 0,018
EC0.5 868 69 799 0,086
EC0.75 847 72 775 0,093
EC1 441 44 397 0,117

Table 2: Comparison of the majority voting ensemble with mi-
croanuerysm candidate extractors.

the candidates. However, if we apply our classification procedure
explained in section 3.3.4, we may gain further improvement as it is
also shown in Table 3. However, despite the improvement over the
individual approaches, the results achieved with this approach are
still not sufficient for clinical use because of the low number of true
detections. In the next section, a novel extension to this approach is
presented to microanuerysm detection to tackle this problem.

Algorithm Candidates TP FP PLR
Mizutani [63] 225 20 205 0.097

EC1 441 44 397 0.117
EC1 270 36 234 0.153

(classified)

Table 3: Comparison of the majority voting ensemble with a microa-
neurysm detector.
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3.4 Microaneurysm detection with 〈PP, CE〉 en-
sembles

One of the main difficulties of MA detection is that candidate extractors
detect only a limited amount of MAs, while it would be essential to
achieve a high sensitivity at this stage. In this section, we propose an
approach to overcome this difficulty by taking advantage of the diversity
of candidate extractors by using different preprocessing methods within
one framework. The merge of diverse candidate output can lead to a
higher number of true detections, while the increasing number of false
detections can be narrowed at a later stage (e.g. classification, voting,
etc). The optimal combination of 〈PP, CE〉 pairs can be found via a
search algorithm (see section 3.4.1), for which a proper energy function
is needed. In the case of MA detection, this function should be defined
to provide small values for a high number of true MA detections, while
it also keeps the number of false detections as low as possible. A
schematic description of ensemble creation is shown in Figure 18.

Figure 18: Flow chart of the proposed ensemble-based framework for
microaneurysm detection.

The approach proposed in this section is the work of the author
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and published in [19], [20], [21], [22], [23], [25], [26], [27].

3.4.1 Improving microaneurysm detection sensitivity using
〈PP, CE〉 ensembles

A significant number of recent works focus on the use of multiple
algorithms as an ensemble, mostly for classification purposes [18]. Our
task is to select the optimal combination of 〈PP, CE〉 pairs on the basis
of the MA candidate outputs generated for each of them. A combination
is considered as optimal if it detects as many microaneurysms as
possible, while keeping the number of false detections low. Our search
framework is based on simulated annealing [82], which is a stochastic
search algorithm that does not apply any restrictions to the number of
preprocessing methods and candidate extractors.

Since the number of 〈PP, CE〉 pairs can be very high, exhaustive
search would be very resource demanding. Instead, we used simulated
annealing, which is a widely used global optimization method. It is
effective for large ensemble pool problems by using random sampling
to avoid getting stuck in a local minimum. A crucial point in an
optimization problem is the choice of the energy function. The selection
of the appropriate energy function is specific to the problem, and we
will provide a detailed explanation for our choice in section 3.4.3.

In order to minimize an energy function, each element of the en-
semble pool E (see definition 3) is evaluated. A set of MA candidates
belongs to each such pair, extracted by the given candidate extraction
algorithm in the images with the corresponding preprocessing method
applied before. The corresponding energy function value is computed
on the joint candidate sets belonging to the pairs in the collection
(see Definition 4). The candidates of this collection are compared to
a set of microaneurysm centroids (ground truth) selected manually
by clinical experts (see Definition 6). In our experiments, we set the
distance threshold to 5 pixels (see Definition 4) at an image resolution

39



of 768 x 576 pixels, which value is calculated from the maximal MA
diameter (100µm). See Algorithm 1 for the formal description of the
combination procedure.

Algorithm 1 Combination of preprocessing methods and candidate
extractors.
Input: An initial temperature T ∈ R.
Input: A minimal temperature Tmin ∈ R.
Input: A temperature change q ∈ R with 0 ≤ q ≤ 1.
Input: A set E = {〈PPi, CEj〉 | i = 1, . . . , N, j = 1, . . . , M} con-

taining all 〈PP, CE〉 pairs.
Input: A ensemble pool E = P (E), where P is the power set contain-

ing all possible collections of the 〈PP, CE〉 pairs.
Input: A function rand (X), which returns a random element x from

the set X.
Input: A function neighbour (E), which returns the set of neighbours

for the state E ∈ E .
Input: A function accept : R×R×R× [0, 1]→ {true, false}, which

is defined in the following way:

accept (e, ei, T, r) =

true, exp
(
e− ei
T

)
> r,

false, otherwise.

Input: An energy function En : E → R.
Output: Ebest ∈ E , where En (Ebest) = min

E∈E
En (E) .
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Algorithm 1 Combination of preprocessing methods and candidate
extractors (continued).
1: E ← rand (E) // Initial state.
2: e← En (E) // Energy for the initial state.
3: E ← E − {E} // Remove the investigated state from the ensemble
pool.

4: while E 6= ∅ and T > Tmin do
5: Ei ← rand (neighbour (Ei))
6: ei ← En (Ei)
7: E ← E − {Ei}
8: if ei < e then
9: E ← Ei // If the energy of the investigated state is lower then
the current minimum, then it is selected as the current optimum.

10: e← ei
11: T ← T · q // The temperature is decreased with the defined
rate.

12: else
13: r ← rand (R) // A random real number between 0 and 1 is
generated for the acceptance function.

14: if accept (e, ei, T, r) = true then
15: E ← Ei // The state can also be accepted via the
acceptance function despite its energy value is not lower than the
current minimum. The algorithm does not get stuck locally in this
way.

16: e← ei
17: T ← T · q
18: end if
19: end if
20: end while
21: return E // The state with the lowest energy is returned.
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Figure 19: The proposed ensemble selection framework for improving
microaneurysm candidate extraction sensitivity.

Note that, we consider N = 4 preprocessing methods (namely:
Walter-Klein, CLAHE, Vessel removal and interpolation, No prepro-
cessing) and M = 5 candidate extractors (namely: Walter, Spencer,
Hough, Lázár, Zhang), respectively, but with the use of simulated
annealing we can easily include more methods in the future. Currently,
the largest number of 〈PP, CE〉 pairs in an ensemble is 5× 4 = 20 in
our case, and the ensemble pool contains 220 − 1 possible ensembles.
For a more illustrative representation of the approach, see Figure 19.

3.4.2 Methodology

We have tested our approach on 199 images selected from three
databases: the training set of the Retinopathy Online Challenge (ROC)
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database (section 2.1.1), the DIARET2.1 database (section 2.1.3) and
our own database, which was provided by the Moorefields Eye Hospital,
London, UK (section 2.1.4). The tests were executed in two ways:

• CASE 1: We selected the preprocessing methods for each can-
didate extractors and measured the change in its sensitivity by
using the combination. More formally, we restricted the ensemble
pool to {〈PPi, CE〉 | i = 1, . . . , 4} in Algorithm 1 with fixing a
specific candidate extractor.

• CASE 2: We measured the effects using multiple candidate
extractors in the selection process as it is described in Algorithm
1. That is, the set {〈PPi, CEj〉 | i = 1, . . . , 4, j = 1, . . . , 5} was
considered to be the the ensemble pool.

For both cases, we disclose the results based on 100 runs, splitting
the database into two disjoint parts randomly in every run.

3.4.3 Energy functions

Since it is a crucial point to choose a suitable energy function in an
optimization process, we decided to select the most appropriate one
by evaluating for multiple possibilities. We have selected such energy
functions, which take into account both TP s and FP s (see definition
6). Namely, we checked the following energy functions in our search
framework:

EnSEN = −SEN
FPI

, (21)

EnPPV = −PPV, (22)

EnFSCORE = −F-score, (23)
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EnLN = − TP

ln FP
TP

. (24)

The components of these energy functions are defined in section 3.1.
While the first three functions are based on literature recommendations,
we also propose an additional one, which is competent with the others.
We cannot consider any measure which relies on true negatives (TN)
like specificity, due to the high number of TNs. Namely, every pixels in
an image which is not a candidate centroid and not marked as MA by
the experts can be regarded as a TN . For this reason, such measures
are generally excluded in such image processing algorithms [83].

The evaluation of the energy functions is accomplished in the
following way: we executed the selection process using all the energy
functions listed above simultaneously for CASE 1 and CASE 2 described
in section 3.4.2. The respective results of this evaluation for CASE 1
are disclosed in Tables 4, 5, 6 and 7 for the ROC, Diaret2.1, Moorefields
database and for all images in the three databases and in Table 8 for
CASE 2, respectively. Each cell in the tables contains the average
sensitivity values and their standard deviations for each case using the
given energy function for selection.

From these results, we can conclude that the energy function EnPPV
defined in (21) fits our goals the most to have a large number of TP s
with a rather low FP count. It is also clear, that (22) and (23) are not
suitable for this optimization process, while (24) could also be taken
into account. However, the variability of (24) is higher than that of
(21), so we have chosen (21) in the selection process.

3.4.4 Results and discussion

The performance of the ensembles found by Algorithm 1 using the
energy function (21) are shown in Tables 9, 10, 11 and 12 regarding
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CE EnSEN EnP P V EnF SCORE EnLN

Walter 0.5523± 0.0479 0.1648± 0.0247 0.1836± 0.0652 0.5386± 0.0597
Spencer 0.2400± 0.0487 0.0811± 0.0291 0.0116± 0.0539 0.2319± 0.0422
Hough 0.2392± 0.0545 0.0934± 0.0847 0.1179± 0.1011 0.0265± 0.0350
Lázár 0.5980± 0.0326 0.2525± 53.0274 0.2563± 0.0267 0.3686± 0.0460
Zhang 0.5583± 0.0387 0.4671± 0.0296 0.4640± 0.0282 0.5546± 0.0354

Table 4: Average sensitivity of the candidate extractors on the ROC
database using a set of preprocessing methods, which are selected using
the energy functions shown in the respective columns.

CE EnSEN EnP P V EnF SCORE EnLN

Walter 0.6651± 0.0519 0.5174± 0.0452 0.5158± 0.0461 0.5673± 0.0710
Spencer 0.0349± 0.0121 0.0064± 0.0060 0.0090± 0.0086 0.0262± 0.0161
Hough 0.1933± 0.0274 0.0800± 0.0765 0.1164± 0.0641 0.1405± 0.0833
Lázár 0.8066± 0.0379 0.4963± 0.0385 0.4964± 0.0426 0.5283± 0.1018
Zhang 0.4709± 0.0289 0.04029± 0.0269 0.4015± 0.0289 0.3580± 0.1727

Table 5: Average sensitivity of the candidate extractors on the Diaret2.1
database using a set of preprocessing methods, which are selected using
the energy functions shown in the respective columns.

CASE 1, and in Table 13 for CASE 2, respectively. Besides sensitivity,
we also disclose other measures to describe the performance of the en-
semble selection framework: the number of FPs per image (FPI (11)),
the positive predictive value (PPV (9)) and the difference between the
sensitivity of the ensemble and the sensitivity of the best performing
individual candidate extractor on the same test database (DS).

From the DS values it can be seen, that the proposed framework
increases sensitivity remarkably compared to the individual approaches.
On the other hand, the number of false positives also increased in a
relatively smaller extent. In Figure 20, a subimage containing both TP s
and FP s is shown. FP s originate from artefacts, image compression
errors or thin vessel parts. The proportion of true and false detection
can be improved by using classification, voting or other post-processing
techniques, as it will be shown in section 3.5.
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CE EnSEN EnP P V EnF SCORE EnLN

Walter 0.7543± 0.0470 0.6474± 0.0855 0.6497± 0.0740 0.7478± 0.0410
Spencer 0.2317± 0.0225 0.1169± 0.0315 0.1181± 0.0326 0.2296± 0.0222
Hough 0.2307± 0.0183 0.2240± 0.0204 0.2214± 0.0184 0.2297± 0.0222
Lázár 0.8077± 0.0215 0.2723± 0.0251 0.2730± 0.0242 0.7106± 0.1990
Zhang 0.5081± 0.0208 0.3235± 0.0234 0.3278± 0.0230 0.4921± 0.0269

Table 6: Average sensitivity of the candidate extractors on the Moore-
fields database using a set of preprocessing methods, which are selected
using the energy functions shown in the respective columns.

CE EnSEN EnP P V EnF SCORE EnLN

Walter 0.5850± 0.0325 0.5312± 0.0332 0.5312± 0.0312 0.5824± 0.0324
Spencer 0.1755± 0.0229 0.0623± 0.0170 0.1401± 0.0700 0.1749± 0.0228
Hough 0.0445± 0.0147 0.0235± 0.0148 0.0250± 0.0139 0.0428± 0.0167
Lázár 0.6290± 0.0262 0.3370± 0.0232 0.3381± 0.0271 0.4763± 0.1587
Zhang 0.3824± 0.0404 0.2698± 0.0210 0.2270± 0.0.0337 0.3797± 0.0385

Table 7: Average sensitivity of the candidate extractors on the image
of all three databases using a set of preprocessing methods, which are
selected using the energy functions shown in the respective columns.

Database EnSEN EnP P V EnF SCORE EnLN

ROC 0.7447± 0.0453 0.3319± 0.0924 0.3061± 0.0796 0.7013± 0.1446
Diaret2.1 0.9820± 0.0041 0.5346± 0.0777 0.5289± 0.0757 0.5886± 0.2248
Moorefields 0.9565± 0.0287 0.3317± 0.0677 0.3314± 0.0666 0.8102± 0.1886

All 0.8711± 0.0303 0.3785± 0.0564 0.3833± 0.0616 0.8555± 0.0322

Table 8: Average sensitivity of the candidate extractor and prepro-
cessing method combinations for the energy functions shown in the
respective columns.
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CE Sensitivity FPI PPV DS
Walter 0.5523± 0.0479 572.1612± 86.7554 0.0066± 0.0015 0.1353± 0.0332
Spencer 0.2400± 0.0487 151.8692± 9.5329 0.0103± 0.0030 0.1142± 0.0232
Hough 0.2392± 0.0545 512.4052± 46.6152 0.0031± 0.0009 0.0566± 0.0334
Lázár 0.5980± 0.0326 569.3936± 53.0947 0.0071± 0.0016 0.1934± 0.0275
Zhang 0.5583± 0.0387 540.2896± 27.8082 0.0069± 0.0014 0.0862± 0.0188

Table 9: Average sensitivity, false positive per image, positive predictive
value and sensitivity difference of the candidate extractors on the ROC
database using a combination of preprocessing methods.

CE Sensitivity FPI PPV DS
Walter 0.6651± 0.0519 443.9127± 29.7674 0.0065± 0.0019 0.0712± 0.0192
Spencer 0.0349± 0.0121 165.7153± 13.3925 0.0009± 0.0003 0.0162± 0.0081
Hough 0.1933± 0.0274 313.5056± 18.8335 0.0029± 0.0011 0.0428± 0.0133
Lázár 0.8066± 0.0379 663.5811± 16.7470 0.0055± 0.0013 0.1778± 0.0161
Zhang 0.4709± 0.0289 129.0984± 14.4546 0.0171± 0.0061 0.0703± 0.0114

Table 10: Average sensitivity, false positive per image, positive predic-
tive value and sensitivity difference of the candidate extractors on the
Diaret2.1 database using a combination of preprocessing methods.

CE Sensitivity FPI PPV DS
Walter 0.7543± 0.0470 792.4597± 32.4551 0.0080± 0.0017 0.0888± 0.0141
Spencer 0.2317± 0.0225 164.6963± 6.2115 0.0123± 0.0020 0.1092± 0.0142
Hough 0.2307± 0.0183 213.3273± 11.7408 0.0098± 0.0019 0.0025± 0.0002
Lázár 0.8077± 0.0215 606.1647± 15.2953 0.0115± 0.0023 0.3089± 0.0186
Zhang 0.5081± 0.0208 162.2053± 8.7651 0.0265± 0.0051 0.0983± 0.0137

Table 11: Average sensitivity, false positive per image, positive predic-
tive value and sensitivity difference of the candidate extractors on the
Moorefields database using a combination of preprocessing methods.
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CE Sensitivity FPI PPV DS
Walter 0.5850± 0.0325 327.4260± 24.5482 0.0113± 0.0017 0.0556± 0.0066
Spencer 0.1755± 0.0229 165.4692± 2.7000 0.0067± 0.0011 0.1077± 0.0137
Hough 0.0445± 0.0147 133.8911± 11.9872 0.0021± 0.0007 0.0114± 0.0034
Lázár 0.6290± 0.0262 401.1449± 17.0726 0.0099± 0.0014 0.1279± 0.0130
Zhang 0.3824± 0.0404 250.7720± 14.3805 0.0097± 0.0013 0.0723± 0.0089

Table 12: Average sensitivity, false positive per image, positive pre-
dictive value and sensitivity difference of the candidate extractors on
all three databases database using a combination of preprocessing
methods.

Database Sensitivity FPI PPV DS
ROC 0.7447± 0.0453 808.8792± 47.5289 0.0060± 0.0012 0.2763± 0.0336

Diaret2.1 0.9820± 0.0041 1121.8218± 70.7609 0.0038± 0.0009 0.3516± 0.0363
Moorefields 0.9565± 0.0287 1135.8917± 36.8809 0.0074± 0.0014 0.3471± 0.0398

All 0.8711± 0.0303 985.8611± 43.9246 0.0055± 0.0008 0.3406± 0.0287

Table 13: Average sensitivity, false positive per image, positive pre-
dictive value and sensitivity difference of the candidate extractor and
preprocessing method combinations on the respective databases.

Figure 20: Results of an microaneurysm candidate extraction by an
ensemble. The circles and squares depict the true and false detections,
respectively.
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CASE 1 CASE 2
Number of pairs 1 2 3 9 10 11
Occurrences 336 962 702 7 389 4

Table 14: The number of 〈PP, CE〉 pairs selected for the ensembles in
different test runs for improving microaneurysm candidate extraction
sensitivity.

We have also investigated the cardinality of the best ensembles for
CASE 1 and CASE 2. Table 14 shows the occurrence of the number of
the selected pairs in each case. As it can be seen, there is a dominant
value for the number of pairs for both cases. In CASE 1, most selections
contained 2 pairs, while in CASE 2, in almost every case 10 pairs were
selected.

3.5 Suppressing the number of false microaneurysm
detections

In this section, an effective microaneurysm detector based on the
combination of preprocessing methods and candidate extractors is
proposed. An exhaustive quantitative analysis is also given to prove
the superiority of our approach over individual algorithms.

3.5.1 Ensemble selection for MA detection

We start with describing our ensemble creation approach based on the
results presented in the previous section. As an energy function, we
used the competition performance metric CPM (15), which is defined
as the average sensitivity level at seven predefined false positive per
image rate (1/8, 1/4, 1/2, 1, 2, 4, 8) [37].

The ensemble creation part (see Algorithm 1) results in a set of 〈PP,
CE〉 pairs. This ensemble Ebest then can be used to detect MAs on
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unknown images. The final ensemble is applied in real detection in the
same way as in the training phase. Namely, the final MAs are detected
by the fusion of the MA candidates of the individual pairs building up
the ensemble Ebest. Similarly, for every detected MA we will have a
confidence value (see definiton 5). Thus, for the final decision on the
presence of MAs, the output MA set needs to be thresholded according
to the assigned confidence values. The choice of the threshold value is
discussed in section 3.5.2.5 in detail.

3.5.2 Results

We have evaluated the proposed approach for both MA detection and
DR grading. In this section, we present the evaluation methodology
we used in each case.

3.5.2.1 MA detection We have evaluated the MA detection ca-
pabilities of the proposed method in the ROC competition for MA
detectors [37], as well, as on the publicly available DiaretDB1 (section
2.1.3) and a private database (section 2.1.4). In this section, we provide
a brief overview on these databases and on the methodology we used for
the evaluation of MA detection performance of the proposed approach.

3.5.2.1.1 Testing For each database, we provide the Free-
response Receiver Operating Characteristic (FROC) curves [83], which
plots the sensitivity against the average number of false positives per
image. To measure the sensitivity at different average false positive
per image levels, we thresholded the output set of the MA detector
based on the confidence values assigned to each candidate. For the
ROC database, we also provide the current ranking of the competition
along with the CPM values, that serves as the basis for the ranking. In
addition, we also calculated a partial area under the curve (AUC) of
the algorithms in the same range (between 1/8 and 8) by normalizing
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the average false positive per image figure by dividing with the maxi-
mum value 8 and applying trapezoidal integration. The empirical AUC
calculated this way is likely to underestimate the true AUC. However,
the uncertainty for the partial AUCs may be quite high due to the low
number of images.

3.5.2.2 DR grading We have also evaluated our ensemble-based
approach to see its grading performance to recognize DR. For this aim,
we determined the image-level classification rate of the ensemble on
the Messidor database containing 1200 images (section 2.1.5). That is,
the presence of any MA means that the image contains signs of DR,
while the absence of MAs indicates a healthy case. In other words, a
pure yes/no decision of the system has been tested. The flow chart of
this approach can be seen in Figure 21.

Figure 21: Flow chart of the early decision support framework.
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3.5.2.2.1 Ensemble creation As there is no training set pro-
vided for the Messidor database, we used an independent database
(ROC) to train our algorithm. Note that, this is quite a strong handi-
cap in comparison with the usual approach to train on a part of the
same database. However, we feel that in this way we can get much
closer to measure up the true performance of our system under real
circumstances.

3.5.2.2.2 Testing In our evaluation, we classified the retinal
images whether they contain signs of DR (R1, R2, R3) or not (R0)
(see section 2.1.5 for details). The MA detector classifies an image
as diseased if at least one MA is detected, and healthy otherwise.
We measured the sensitivity (5), specificity (6) and accuracy (12) of
the detector at different levels by thresholding the confidence values
assigned to the MA candidates. We also measured the percentage of
correctly recognized cases for each grade. We provided a fitted Receiver
Operating Characteristic (ROC) curve along with the empirical and
fitted AUC for the proposed method on the Messidor database. For
curve fitting, we used JROCFIT [84].

3.5.2.3 Microaneurysm detection results In Table 15, we ex-
hibit the 〈PP, CE〉 pairs included in the selected ensembles for the three
databases, respectively. The rows of the table show the preprocessing
methods , while the columns label the candidate extractor algorithms.

Table 16 contains the ranked quantitative results of the participants
of the ROC competition, with the proposed ensemble (DRSCREEN)
highlighted as the current leader. The performance of the ensemble is
also shown in Figure 24 in terms of a FROC curve. As we can see from
Table 16, the proposed ensemble earned both a higher CPM score and
a higher partial AUC than the individual algorithms.
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Walter Spencer Hough Lázár Zhang
Walter-Klein M R
CLAHE R, D M R D
Vessel Removal D R, D, M R, D
Illumination eq. R, M
No preprocessing R M R, D R

Table 15: 〈PP, CE〉 pairs selected as members of the microaneurysm
detection ensemble for the three database. R, D, M denote whether
the pair is selected for the ROC, Diaret2.1, or the Moorfields database,
respectively.

3.5.2.4 Diabetic retinopathy grading results In Table 17, we
provide the sensitivity (SEN (5)), specificity (SPE (6)) and accuracy
(ACC (12)) measures of our detector corresponding to different thresh-
old values, respectively. The fitted ROC curve of the detector can be
seen in Figure 22. The empirical area under curve (AUC) is 0.875,
while the AUC for the fitted curve is 0.90±0.01. Table 17 also contains
the percentage of the correctly recognized cases for each class.

3.5.2.5 Discussion A strong point of the proposed method is that
it performs well under difficult circumstances. Figure 23 shows an
example image, where the application of CLAHE made it easier to
distinguish the MAs from their background. However, the use of
the vessel removal and inpainting preprocessing method caused the
missing of a true MA, while the detection of the remaining MA is
easier in the absence of thin retinal vessels. Thus, using different
preprocessing methods with candidate extractors creates diversity
among the members of the ensemble, which is desired for systems using
multiple estimators [18]. This diversity ensures the suppression of false
detections, since diverse detectors tend to make different mistakes.
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Team CPM AUC
DRSCREEN 0.434 0.551
Niemeijer et al. 0.395 0.469

LaTIM 0.381 0.489
ISMV 0.375 0.435

OKmedical II 0.369 0.465
OKmedical 0.357 0.430
Lázár et al. 0.355 0.449

GIB 0.322 0.399
Fujita 0.310 0.378
IRIA 0.264 0.368

Waikato 0.206 0.273

Table 16: Quantitative results of the Retinopathy Online Challenge for
microaneurysm detection. For each participating team, the competition
performance metric and the partial area under the FROC curve are
presented.

Thus, the false detections are likely to receive lower confidence values
in the voting procedure.

Our experimental results show that the proposed ensemble-based
MA detector outperforms the current individual approaches in MA de-
tection. It has been also proven that the framework has high flexibility
for different databases. As it can be seen in Table 15, the ensemble
members may vary, which suggests relatively high variance among
databases in this field. Despite this variability, the performance of
the ensemble still remained stable. In [37], the FPI rate for a human
expert is measured in the ROC database against the consensus of three
human experts. This level is approximately 1 FP per image [37] for the
ROC database, on which level our ensemble achieved the best score
in the competition. Thus, we can recommend to use this level for
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Threshold 0.4 0.5 0.6 0.7 0.8 0.9 1.0
SEN 1 1 1 0.99 0.96 0.76 0.31
SPE 0 0.01 0.03 0.14 0.51 0.88 0.98
ACC 0.53 0.54 0.55 0.59 0.75 0.82 0.62
R0 0.00 0.01 0.03 0.14 0.51 0.88 0.98
R1 1.00 1.00 1.00 0.97 0.92 0.60 0.18
R2 1.00 1.00 1.00 1.00 0.96 0.72 0.29
R3 1.00 1.00 1.00 1.00 0.98 0.92 0.42

Table 17: Results of diabetic retinopathy grading on the Messidor
database based on the microanuerysm detection results. For each
threshold, sensitivity, specificity, accuracy and the percentage of cor-
rectly recognized cases for each grade are presented.

thresholding at the ensemble creation phase and use it for detecting
MAs on unknown images.

As for DR grading, our ensemble also performed well. It is also
important to see how the different classes (R0, R1, R2, R3) are rec-
ognized at different levels. As it is desired, the severity of DR affects
the performance of our detector. At each threshold level, where the
sensitivity is less than 1.0, the more severe cases recognized with higher
probability.

The selection of the appropriate threshold is also an important issue
for our detector to provide sufficient sensitivity and specificity rate.
In [85], it has been suggested that sensitivity is more important for a
screening system than specificity. In opposition, the British Diabetic
Association (BDA) recommends 80% sensitivity and 95% specificity
for DR screening [86]. In Table 17, we can see that the most accurate
result is achieved with the threshold value 0.9. By applying the first
idea, we might consider the results corresponding to the threshold
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Figure 22: Receiver operating characteristic curve of the microaneurysm
detector ensemble on the Messidor database.

value 0.8 as the best in our experiment, where 96% sensitivity and 51%
specificity are achieved. That is, we recognized almost all of the cases
where DR is present, and half of the healthy ones. The closest to the
second recommendation is the performance achieved at the 0.9 level:
76% sensitivity and 88% specificity.

It is difficult to compare our method to other screening systems,
since those are tested on private databases. Unfortunately, the propor-
tion of non-DR/DR cases are varying in these experiments. Abramoff
et al. [85] reported 0.86 AUC on a population where 4.96% of the cases
had at least minimum signs of DR. The databases on which Agurto
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(a) Original (b) CLAHE (c) Vessel re-
moval

Figure 23: The effect of different preprocessing methods where microa-
neurysms are hard to detect.

et al. [87] tested, 74.43% and 76.26% of the cases contained signs of
DR and they achieved 0.81 and 0.89 AUCs, respectively. The closest
to match the requirements of BDA is the system of Jelinek et al. [88]
with a 85% sensitivity and 90% specificity, where approximately 30%
of patients had DR. Similar proportion (35.88%) of patients having
DR are reported by Fleming et al. [89] in their automatic screening
system.

Despite the promising results, our system still misclassifies some
images, where serious case of DR is present. To improve grading
performance, we must take into account the presence or absence of
more DR-specific lesions (e.g. exudates), image quality, the recognition
of anatomical parts which are essential in a clinical setting. However,
our MA detector can serve as a main component of such a system, as
we will show it in section 4.

The FROC curves of the ensemble for the DiaretDB1 2.1 and for
the Moorfields database are shown in Figures 25 and 26, respectively.
To the best of our knowledge, no corresponding quantitative results
have been published for these databases yet. Thus, we disclose the
results of the ensemble-based method only.
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Figure 24: Free-response receiver operating characteristic curve of
the microaneurysm detection ensemble on the Retinopathy Online
Challenge.

3.6 Context-aware weighting of 〈PP, CE〉 ensem-
bles for microaneurysm detection

The detection of MAs highly depends on the characteristics of the
imaging device and other image properties (e.g. type of compression).
As a result, some MAs can be easily spotted on the background of
the retina, while the recognition of others are more difficult. Besides
image characteristics, the spatial location also has an influence on the
detection of MAs (e.g. proximity of vessel parts, etc.)
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Figure 25: Free-response receiver operating characteristic curve of the
microaneurysm detection ensemble on the DiaretDB1 2.1 database.

In [37], Niemeijer et al. distinguishes three categories based on vis-
ibility: subtle, regular and obvious. An example for this categorization
can be seen in Figure 27. In the same study, they also investigate the
detection of MAs near vessel. We extend these categorization with two
additional categories with also taking into account the MAs which are
detected on the macula and which are on the periphery of the image.
Figure 28 shows examples for the spatial categories. We also provide a
computational approach to determine the characteristics of the MAs.

To recognize MAs in the different categories, we measure the ef-
fect of using different preprocessing methods. As we can see later
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Figure 26: Free-response receiver operating characteristic curve of the
microaneurysm detection ensemble on the Moorfields database.

on, a preprocessing method can enhance the detection rate in a few
categories, but there is no single preprocessing method for all. To
overcome this difficulty, we propose a context-aware selection approach
of preprocessing methods for MA candidate extraction.

3.6.1 Context-aware selection of 〈PP, CE〉 pairs

In this section, we describe our context-aware preprocessing method
selection approach, which is based on learning. Thus, a training
database with manually labelled MAs is needed. The creation of such
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(a) Subtle (b) Regular (c) Obvious

Figure 27: Microaneurysm categories based on visibility.

(a) Near ves-
sel

(b) In macula (c) Periphery

Figure 28: Microaneurysm categories based on spatial location.

database is explained in details in section 3.6.1.1.
The approach proposed in this section is published in [28], and [29].

3.6.1.1 Preparation of the training data First, the manually
labelled MAs of the training database must be categorized. Opposed
to the manual way described in [37], we set up an automatic method
described next.

3.6.1.1.1 Categorization based on visibility To measure
the visibility of an MA, we select an A× B (e.g. A = B = 20 in our
case) window centered on the MA centroid and measure the contrast
in this region in the following way:√√√√ 1

AB

A∑
x=1

B∑
y=1

(f (x, y)− µ)2, (25)
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where f (x, y) is the corresponding intensity of the pixel having coordi-
nates (x, y) and µ is the average intensity of the window.

Since we do not have any prior knowledge about the distribution of
MAs based on the contrast information, we aimed to divide the MAs
into three sets with equal cardinalities. Thus, we categorize an MA as
subtle, if its contrast is lower than the 33th percentile of the observed
contrast values in the training set, obvious, if its contrast is higher
than the 66th percentile and regular, otherwise.

3.6.1.1.2 Categorization based on spatial location We
also categorized MAs into three more categories based on their spatial
locations: near to vessel, in the macula and on the periphery. For
the first category, we must detect the vessel system of the retina. For
this task, we used the method presented in [90]. We consider an MA
as near to vessel, if it is closer to a vessel part than the maximal
MA diameter. For the second category, we detected macula with the
detector proposed in [31]. Then, we collect the MAs falling into the
area of the macula to the in the macula category. Finally, MAs on
the periphery are determined in the following way: first, the radius of
the retinal ROI is calculated. Then, each MA having a distance at
least 90% of the radius from the center of the retina is considered as
peripheral MA.

3.6.1.2 Training In the training step, each preprocessing method
is applied on the training set individually and their effect on the
candidate extractor is evaluated. That is, the number of true and false
positives, and the number of correctly identified MAs for each category
are measured, respectively. The best performing preprocessing method
for each category is selected.
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3.6.1.3 Testing On unknown images, the results of the candidate
extractor with the selected preprocessing methods are collected and
the results are merged as the union of candidate extractor output.
The merged MA candidates are the output of the proposed candidate
extraction approach.

3.6.1.3.1 Methodology Our experimental test is performed
on the DiaretDB1 2.1 database (section 2.1.3). The selection of the
preprocessing method is solely based on the results achieved in the
training set. Detailed information about the number of images and
MAs can be found in Table 18. For each preprocessing method listed
in section 3.2.1, we used the same parameter setting for the Lázár et
al. (section 3.2.2.5) MA candidate extractor.

Category Train Test
MA 126 278

Images 28 61
Subtle 32 101
Regular 48 86
Obvious 46 91
In macula 4 4
Near vessel 25 43
Periphery 39 69

Table 18: The number of all microaneurysms, images, and the mi-
croaneurysms belonging to each category for the train and the test
databases, respectively.

3.6.1.4 Results and discussion Table 19 contains the results of
the training phase with the highest number of correctly recognized
MAs are highlighted with the corresponding preprocessing method. As
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it can be seen, the CL, the IA and the VR preprocessing methods (see
section 3.2.1) are selected, while each performed better than the rest
of the algorithms in two categories.

NO BS WK CL GN HE IA VR
TP 57 49 29 61 16 52 54 65
FP 1572 919 1157 1799 231 859 659 1657

Subtle 14 5 8 16 0 11 6 18
Regular 21 15 8 24 2 17 18 22
Obvious 22 29 13 21 14 25 30 25

In macula 2 1 2 3 0 1 2 2
Near vessel 4 7 4 4 3 7 8 4
Periphery 12 7 7 16 2 16 11 19

Table 19: The number of true and false detections and the number
of correctly recognized cases for each microaneurysm category in the
training database. The CL, the IA and the VR preprocessing meth-
ods are selected since they achieved the highest number of correctly
identified microaneurysms in at least one category.

In Table 20, the results of the proposed approach and the individual
methods can be seen. The proposed method provided the highest
number of correctly recognized MAs in each category. However, the
number of false detections also increased, but it can be lowered further
by applying a voting scheme.

While these results are reassuring, it should also be noted that
the MA detection performance for some categories (e.g. near vessel,
periphery) are rather low. In the future, the inclusion of other pre-
processing methods and MA candidate extractors can lead to a better
performance in these cases.

3.6.2 Adaptive weighting

In this section, we show a way to combine the output of the 〈PP,
CE〉 pairs by weighting. We assign weights to each candidate with a
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NO BS WK CL GN HE IA VR Proposed
TP 147 67 54 154 28 60 72 116 198
FP 3023 1625 2303 3105 240 1500 765 3383 5521

Subtle 41 9 12 46 0 11 7 27 64
Regular 53 22 15 55 22 24 25 43 67
Obvious 53 36 27 53 22 25 44 46 68

In macula 2 0 0 2 0 1 1 2 3
Near vessel 7 8 2 6 6 3 9 8 18
Periphery 23 6 8 27 1 8 7 18 38

Table 20: The number of true and false detections and the number
of correctly recognized cases for each microaneurysm category in the
test database. The proposed combination outperformed the individual
preprocessing methods in all categories.

respect to three different pieces of information: which pair extracted
the output, what is the contrast in the neighbourhood of the MA and
where it is located in the image.

3.6.2.1 The weighted voting approach The performance of
each 〈PP, CE〉 pair is measured for each category in the following
way: each extracted candidate is categorized both by visibility and
spatial location, then compared to the ground truth whether it is
actually an MA or not. Based on this evaluation, for each pair p, visual
category v and spatial category s, we calculate the F-score measure
(10):

F-scorepvs = 2 · SENp
vs · PPV p

vs

SENp
vs + PPV p

vs
, (26)

where for label v:

v ∈ {subtle, obvious, regular}, (27)

and for label s:

s ∈ {near to vessel, in the macula, on the periphery, other}. (28)
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Then, we approximate the optimal weights for 〈PP, CE〉 pair p through
the following formula [18]:

wpvs = log F-scorepvs
1− F-scorepvs

. (29)

The weights are normalized for each combination of visual and spatial
categories to have a sum of 1.

Finally, for each candidate in an unknown image, the visual and
spatial location categories are determined and the corresponding weight
value is summed as the confidence value of the candidate. The final
confidence value assigned to an MA candidate is the sum of the weights
of the 〈PP, CE〉 pairs, which detected this candidate. The selected
MA candidates can be filtered by thresholding their confidence values.

3.6.2.2 Results and discussion The results of the weighting ap-
proach for the DiaretDB0 (section 2.1.2) and the ROC (section 2.1.1)
database can be seen in Tables 21 and 22, respectively. The search-
based algorithm in the table for comparison is a former method of
ours, which based on the selection of 〈PP, CE〉 pairs (section 3.4).
As it can be seen from the results, the proposed weighting approach
provides better results on the DiaretDB0 database, but not on the ROC
database. The reason for the alternating performance of the weighted
and the search-based method may lie in the fact that the fundus image
databases are rather different. However, both ensemble-based approach
outperformed the individual detectors which shows the strength of the
ensembles in this field.
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1/8 1/4 1/2 1 2 4 8 avg.
DRSCREEN (search) 0.003 0.005 0.011 0.021 0.043 0.087 0.174 0.049

DRSCREEN (weighted) 0.012 0.025 0.037 0.060 0.090 0.129 0.189 0.077

Table 21: Comparison of the search and the weighting based microa-
neurysm detection-ensembles.

1/8 1/4 1/2 1 2 4 8 avg.
DRSCREEN (search) 0.173 0.275 0.380 0.444 0.526 0.599 0.643 0.434

DRSCREEN (weighted) 0.172 0.201 0.323 0.426 0.478 0.560 0.638 0.399
Niemeijer et al. 0.243 0.297 0.336 0.397 0.454 0.498 0.542 0.395

LaTIM 0.166 0.230 0.318 0.385 0.434 0.534 0.598 0.381
ISMV 0.217 0.270 0.366 0.407 0.440 0.459 0.468 0.375

OKmedical II 0.175 0.242 0.297 0.370 0.437 0.493 0.569 0.369
OKmedical 0.198 0.265 0.315 0.356 0.394 0.466 0.501 0.357
Lázár et al. 0.169 0.248 0.274 0.367 0.385 0.499 0.542 0.355

GIB 0.190 0.216 0.254 0.300 0.364 0.411 0.519 0.322
Fujita 0.181 0.224 0.259 0.289 0.347 0.402 0.466 0.310
IRIA 0.041 0.160 0.192 0.242 0.321 0.397 0.493 0.264

Waikato 0.055 0.111 0.184 0.213 0.251 0.300 0.329 0.206

Table 22: Detailed quantitative results of the Retinopathy Online
Challenge (including the weighted ensemble).

4 An ensemble-based grading method for
diabetic retinopathy based on detailed
retinal image analysis

In section 3, we have seen how efficient MA detection can be achieved
by using an ensemble-based approach. Though in section 3.4, we have
already discussed grading performance based on the detection of MAs,
it is a natural improvement to consider more information for such a
decision. To raise accuracy, we also use an ensemble-based approach
for the final grading decision.

In this section, a decision-making framework for the final grading
of color fundus images regarding diabetic retinopathy is proposed. The
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approach classifies images based on characteristic features extracted
by lesion detection and anatomical part recognition algorithms. The
features are then classified using an ensemble of classifiers. As the
results show, the proposed approach is highly accurate for this task.
The flow chart of the final decision approach can be seen in Figure 29.

Figure 29: Flow chart of the final decision support framework.

The approach proposed in this section is also published in [30].

4.1 Ensemble learning
In this section, the basic concepts of ensemble learning is presented
based on the definitions used in [18]. These concepts help to under-
standing of our ensemble-based system for DR grading introduced in
the forthcoming sections.

Definition 11 Let Ω = {ω1, ω2, . . . , ωo} be a set of class labels. Then,
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a function D : Rn → Ω is a called classifier, while the vector χ̄ =
[χ1, χ2, . . . , χn]T ∈ Rn is called a feature vector.

Definition 12 Let H = {h1, h2, . . . , ho} be discriminator functions
for the class labels Ω = {ω1, ω2, . . . , ωo} of the form hi : Rn → R, i =
1, . . . , o. Then

D (χ̄) = ωj∗ ⇐⇒ hj∗ (χ̄) = max
j=1,...,o

(hj (χ̄)) . (30)

Definition 13 Let D1, D2, . . . , DL be classifiers. Then, the majority
voting ensemble classifier Dmaj : Rn → Ω formed from these classifiers
is defined as follows:

Dmaj (χ̄) = ωi∗ ⇐⇒ ωi∗ = max
i=1,...,o

 L∑
j=1
{1|Dj (χ̄) = ωi}

 , (31)

i = 1, . . . o.

Definition 14 Let D1, D2, . . . , DL be classifiers and β̄ = {β1, β2, . . . , βL} ,
β ∈ R a weight vector assigned to the classifiers. Then, the weighted
majority voting ensemble classifier Dwmaj : Rn → Ω is defined as
follows:

Dwmaj (χ̄) = ωi∗ ⇐⇒ ωi∗ = max
i=1,...,o

 L∑
j=1

{
βj ∈ β̄|Dj (χ̄) = ωi

} .
(32)

Definition 15 Let D1, D2, . . . , DL be classifiers and hj,i be the dis-
criminator function of the classifier Dj for the class i, i = 1, . . . , o, j =
1, . . . , L. Then, the following algebraic ensemble classifiers can be
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defined:

Dmin (χ̄) = ωi∗ ⇐⇒ ωi∗ = max
i=1,...,o

(
L

min
j=1

(hj,i (χ̄))
)
, (33)

Dmax (χ̄) = ωi∗ ⇐⇒ ωi∗ = max
i=1,...,o

(
Lmax
j=1

(hj,i (χ̄))
)
, (34)

Dpro (χ̄) = ωi∗ ⇐⇒ ωi∗ = max
i=1,...,o

 L∏
j=1

(hj,i (χ̄))
 , (35)

Davg (χ̄) = ωi∗ ⇐⇒ ωi∗ = max
i=1,...,o

 1
L
·
L∑
j=1

(hj,i (χ̄))
 . (36)

4.2 Components of an automatic system for dia-
betic retinopathy screening

In this section, the components we used for feature extraction are
described.

4.2.1 Quality assessment

We classify the images whether they have sufficient quality for a reliable
decision with a supervised classifier with the box count values of the
detected vessel system as features.

4.2.2 Vessel extraction

The detection of the vessels helps the localization of other anatomical
parts and lesions besides the vascular disorders. In [90], an approach
based on Hidden Markov Random Fields (HMRF) for the segmentation
of the vascular system in retina images is proposed. The authors extend
the optimization problem of HMRF models considering the tangent
vector field of the image to enhance the connectivity of the vascular
system consisting of elongated structures.
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4.2.3 Pre-screening

As a novel contribution, we classify the images as severely diseased
(abnormal) or to be forwarded for further processing. The aim of
this step is twofold. On the one hand, we minimize the risk that an
abnormal image passes the screening without a warning, since it is
immediately spotted by the automatic system before detailed analysis.
On the other hand, we save computational time, since only the not
obviously abnormal fundus images are analysed in detail. Figure 30
gives an impression about these two classes. At the analysis of fundus
images, machine learning algorithms are often applied to classification
based on feature vectors consisting of intensity values of the image
in other fields, see e.g. [91] for HIV or [92] for glaucoma detection.
Thus, we consider implementing these approaches for DR screening, as
well. We also improved the techniques with feature extraction based
on the inhomogeneity characteristics of the diseased retina supported
by clinical observations. Our algorithms are trained and tested on
images from publicly available, as well as, on our own databases. The
approach proposed in this section is also published in [32], [33], [34].

As first step of our approach, we check whether the fundus repre-
sented on the image has so severe abnormalities (e.g. large haemor-
rhages, retinal detachment) that the patient should be sent directly to a
clinical expert. In the case of high-loaded automatic systems, skipping
these images will enhance the performance, since detailed analyses
should not take place. Pre-screening is realized with the application of
machine learning algorithms. Next, we summarize the components of
pre-screening by consequent steps.

4.2.3.1 Preprocessing As a preprocessing step, we convert the
input RGB images to grayscale ones to get a suitable representation
for possible disorders. Then, we apply adaptive histogram equalization
(AHE) as an intensity normalization step proposed in [75] with an
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(a) (b)

Figure 30: Samples from the image set (both taken from the DRIVE
database [39]); (a) abnormal fundus, (b) not abnormal fundus, the
proper grading needs further analysis.

output is shown in Figure 31. Finally, we rescale the images to the size
of 90 × 90 pixels.

4.2.3.2 Feature vectors and classifiers We also take advantage
of the clinical observation that fundi with severe diabetic retinopa-
thy often have inhomogeneity caused by retinal pigment epithelium
(RPE) atrophy, which is the damage of the pigmented cell layer of the
retina [93]. To extract these features, we used the following approaches:

• Inhomogeneity: Let the image be split into disjoint subimages
of size Z × Z, e.g. with Z = 5. Then, for each pixel within a
subimage, we compute the sum of intensity differences larger
than a given threshold t for every subsequent subimage pixels. If
this number is larger than zero, the feature is set to 1, otherwise
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(a) (b)

Figure 31: Contrast enhancement of fundus images by adaptive his-
togram equalization: (a) grayscale image, (b) image preprocessed by
AHE. Original image is taken from the DRIVE database [39].

to 0. See Algorithm 2 for the precise formulation. The values
of Z and t are determined experimentally and these values are
constant across the image.

• Standard deviation: For each subimage we calculate the stan-
dard deviation of intensity values.

• Combined: We calculate both the inhomogeneity and the stan-
dard deviation features and combine them.

For the detailed evaluation of this approach, see appendix A.

4.2.4 Microaneurysm detection

A key feature to recognize DR is to detect microaneurysms in the
fundus of the eye. The importance of handling MAs are two-fold.
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Algorithm 2 Extraction of the inhomogeneity feature.
Input: A digital retinal image I of size k × l .
Input: A subimage size 0 ≤ Z ≤ min (k, l).
Input: A threshold parameter t ≥ 0.
Input: An empty array fv of size (k/Z) · (l/Z).
Output: Inhomogeneity values for each subimage stored in fv.
for x := 0 to k − Z do

for y := 0 to l − Z do
for all x′ ∈ [x, x+ Z] and y′ ∈ [y, y + s] do

sub := |I (x, y)− I (x′, y′)|
if sub ≥ t then

diff := diff + sub
end if

end for
if diff > 0 then

fv [count] := 1
else

fv [count] := 0
end if
count := count+ 1
x := x+ Z
y := y + Z

end for
end for
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First, they are the earliest signs of DR, hence their timely and precise
detection is essential. On the other hand, the grading performance of
computer-aided DR screening systems highly depends on MA detection
[85]. A more detailed description of our approach to MA detection can
be found in section 3.

4.2.5 Exudate detection

Exudates are primary signs of diabetic retinopathy and occur when
lipid or fat leaks from blood vessels or aneurysms. Exudates are light,
small spots, which can have irregular shape. Since exudate detection
is also a challenging task, we follow the same complex methodology
as for microaneurysm detection [19]. Thus, we combine preprocessing
methods and exudate candidate extractors in the case of exudate
detection, too. More details about this approach can be found in [94].

4.2.6 Macula detection

The macula is the central region of sharp vision in the human eye,
with its center referred to as the fovea (see Figure 3). Any lesions
(e.g. microaneurysms) which appear within the macula can lead to
severe loss of vision. Therefore, the efficient detection of the macula
is essential in an automatic screening system for diabetic retinopathy.
The macula is located roughly in the center of the retina, temporal to
the optic nerve. It is a small and highly sensitive part of the retina,
which is responsible for detailed central vision. The macula allows us
to recognize details and perform tasks that require central vision such
as reading.

The approach proposed in this section is also published in [31].

4.2.6.1 A novel algorithm for macula detection In this sec-
tion, we present a novel approach to detect the macula in a retinal
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image. The proposed macula detection algorithm is formalized in
algorithm 3.

Algorithm 3 A novel macula detector.
Input: A digital retinal image I of size k × l.
Input: A parameter 0 ≤ q ≤ 1 to adjust the mask size in the median
filtering step.

Input: A threshold parameter t ∈ [−255, . . . , 255].
Output: A binary image containing the macula region of the eye.

1. Let V = dmin (k, l) · qe.
2. Produce an image I ′ with the same size as I by applying median

filtering on I with a mask size V × V .
3. Create the difference image Idiff = I − I ′.
4. Produce a binary image Ibin by assigning all pixels with larger

intensity than t in the Idiff to the foreground, while the rest to
its background.

5. Select the largest binary component as the macula.

The results after each step of the algorithm can also be observed in
Figure 32.For the detailed evaluation of this approach, see appendix B.

4.2.7 Optic disc detection

The optic disc is a circular shaped anatomical structure with a bright
appearance. It is the area where the optic nerve enters the eye. If
the center and the radius of the optic disc are detected correctly, then
they can be used as reference data for approximating other anatomical
parts e.g. the macula. Locating these anatomical parts is important
from two aspects: the appearance of certain lesions can indicate a more
advanced stage of DR and the presence of rare, but serious defects
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(a) (b)

(c) (d)

Figure 32: The steps of the proposed macula detection algorithm.
(a) The green channel of the input image. (b) The result of the
median filtering. (c) The difference image. (d) The binary image after
thresholding and largest component selection.

(like retinal detachment) can ruin the detection of the optic disc and
macula. More details on this approach can be found in [95].
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4.2.8 Multiscale AM/FM based feature extraction

The Amplitude-Modulation Frequency-Modulation (AM/FM) method
extracts information from an image, decomposing the green channels of
the images into different representations which reflect the intensity, ge-
ometry, and texture of the structures with signal processing techniques.
The extracted information are then filtered to establish 39 different
representations of the image. The images are classified using these
features with a supervised learning method. More on this approach
can be found in [96].

4.3 Ensemble-based decision making based on de-
tailed retinal image analysis

The most important expectation for a computer-aided medical system
is its high reliability. To ensure that, we use ensemble-based decision
making [18]. Thus, we have trained several classifiers to separate DR
and non-DR cases and fused their results. In this section, we present
how we selected the ensemble for DR classification based on the features
extracted from the output of the detector presented in section 4.2.

4.3.1 Features

To classify the images we extracted the features summarized inTtable
23.

Features χ8 − χ17 are divided with the diameter of the ROI for
normalization to compensate different image sizes.

4.3.2 Ensemble selection

To select the optimal ensemble for DR classification, we trained several
well-known classification algorithms (Alternating Decision Tree, kNN,
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Feature Description of feature
χ1 The result of pre-screening (non-severe DR / severe DR).

χ2 − χ7 The number of microaneurysms detected at α confidence
(see Definition 5), where α = 0.5, . . . , 1.0.

χ8 − χ16 The number of exudate pixels at α confidence, where
α = 0.1, . . . , 1.0.

χ17 The euclidean distance of the center of the optic disc
and the fovea.

χ18 The result of the AM/FM-based classification (non-DR
/ DR).

Table 23: Features for final diabetic retinopathy grading.

AdaBoost, Multilayer Perceptron, naive Bayes, Random Forest). Each
ensemble is a subset of the classifiers.

4.3.2.1 Classifier output combination The first question is the
combination strategy for the output of the classifiers. For this task,
we tested the following approaches: majority voting (see Definition
13), weighted majority voting (see Definition 14) and the following
algebraic combinations of class membership probabilities: average,
product, minimum and maximum (see Definition 15).

4.3.2.2 Ensemble search strategies Several approaches have
been tested for selecting the best ensemble for DR grading. The
following search strategies were investigated [97]:

• Forward search: First, the best individual classifier is selected,
which is the starting member of the ensemble. Then, further
classifiers are added if the performance of the ensemble increases.
The process ends when no further performance increase can be
achieved by adding more classifiers.
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• Backward search: First, all classifiers are members of the
ensemble. Then, classifiers are removed from the ensemble until
the performance of the ensemble increases.

• All: All classifiers are members of the ensemble.

To evaluate the performance of an ensemble in the search process,
we compared accuracy (12), the F-score measure (10) and sensitivity
(5) as energy functions.

4.3.2.3 Training 10-fold cross-validation were used for both the
training phase and for the evaluation of the ensembles. The results
given in section 4.4 are average values of the 10-fold cross-validation
for the evaluation functions in each case on the Messidor database
(section 2.1.5).

4.4 Experiments
We have evaluated the ensemble creation strategies in two scenarios.
First, we have investigated whether the image contains early signs
of retinopathy (R1) or not (R0) (R0 vs R1 scenario). Second, we
measured the classification performance of the ensembles between all
diseased categories (R1, R2, R3) and the normal one (R0) (R0 vs all
scenario). Tables 24, 25 and 26 contain the sensitivity, specificity and
accuracy values for the different strategies and energy functions for
the first scenario, while Tables 27, 28 and 29 for the second scenario,
respectively. For both scenarios, the cells containing the values for the
most accurate ensembles are set in bold.

As it can be seen, the backward search strategy and the average
combination strategy provided the best results for each case. However,
the choice of the energy function needs to be further investigated, since
different energy functions are found to be the best in the two scenarios.
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Accuracy energy function
R0 vs R1 ALL FORWARD BACKWARD
Dmaj 96%/84%/85% 77%/90%/88% 92%/88%/89%
Dwmaj 85%/87%/87% 83%/88%/87% 85%/88%/88%
Davg 80%/88%/87% 77%/88%/86% 94%/90%/90%
Dpro 100%/78%/78% 80%/88%/87% 100%/79%/80%
Dmax 48%/95%/69% 74%/91%/87% 83%/89%/88%
Dmin 95%/79%/80% 71%/91%/86% 98%/81%/83%

Table 24: R0 vs R1 final diabetic retinopathy grading results on the
Messidor database with accuracy as energy function using different
combination and search strategies. Each cell contains the sensitivity,
the specificity and the accurracy of the ensembles, respectively.

F-score energy function
R0 vs R1 ALL FORWARD BACKWARD
Dmaj 96%/84%/85% 75%/89%/86% 84%/89%/88%
Dwmaj 85%/87%/87% 87%/87%/87% 69%/88%/83%
Davg 80%/88%/87% 82%/89%/88% 93%/90%/90%
Dpro 100%/78%/78% 79%/89%/87% 100%/78%/80%
Dmax 48%/95%/69% 85%/88%/88% 64%/96%/85%
Dmin 95%/79%/80% 81%/88%/87% 76%/89%/86%

Table 25: R0 vs R1 final diabetic retinopathy grading results on the
Messidor database with as F-score energy function using different
combination and search strategies. Each cell contains the sensitivity,
the specificity and the accurracy of the ensembles, respectively.
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Sensitivity energy function
R0 vs R1 ALL FORWARD BACKWARD
Dmaj 96%/84%/85% 98%/82%/83% 88%/87%/87%
Dwmaj 85%/87%/87% 76%/90%/88% 98%/82%/84%
Davg 80%/88%/87% 86%/88%/88% 85%/89%/88%
Dpro 100%/78%/78% 74%/90%/86% 100%/78%/78%
Dmax 48%/95%/69% 74%/90%/87% 81%/90%/88%
Dmin 95%/79%/80% 77%/90%/87% 98%/81%/82%

Table 26: R0 vs R1 final diabetic retinopathy grading results on the
Messidor database with sensitivity as energy function using different
combination and search strategies. Each cell contains the sensitivity,
the specificity and the accurracy of the ensembles, respectively.

Accuracy energy function
R0 vs all ALL FORWARD BACKWARD
Dmaj 88%/79%/86% 91%/76%/88% 90%/80%/89%
Dwmaj 88%/84%/87% 88%/88%/87% 86%/83%/85%
Davg 86%/83%/85% 88%/85%/88% 87%/80%/86%
Dpro 95%/38%/60% 85%/83%/85% 88%/85%/88%
Dmax 80%/95%/80% 88%/82%/87% 81%/97%/82%
Dmin 92%/50%/72% 90%/76%/87% 93%/77%/89%

Table 27: R0 vs all final diabetic retinopathy grading results on the
Messidor database with accuracy as energy function using different
combination and search strategies. Each cell contains the sensitivity,
the specificity and the accurracy of the ensembles, respectively.
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F-score energy function
R0 vs all ALL FORWARD BACKWARD
Dmaj 88%/79%/86% 88%/84%/88% 90%/88%/90%
Dwmaj 88%/84%/87% 91%/68%/85% 89%/90%/88%
Davg 86%/83%/85% 89%/81%/87% 89%/92%/90%
Dpro 95%/38%/60% 89%/72%/85% 90%/73%/86%
Dmax 80%/95%/80% 87%/78%/86% 81%/98%/83%
Dmin 92%/50%/72% 88%/76%/86% 89%/83%/88%

Table 28: R0 vs all final diabetic retinopathy grading results on the
Messidor database with F-score as energy function using different
combination and search strategies. Each cell contains the sensitivity,
the specificity and the accurracy of the ensembles, respectively.

Sensitivity energy function
R0 vs all ALL FORWARD BACKWARD
Dmaj 88%/79%/86% 88%/77%/86% 89%/78%/86%
Dwmaj 88%/84%/87% 88%/78%/85% 88%/93%/89%
Davg 86%/83%/85% 92%/75%/88% 90%/91%/90%
Dpro 95%/38%/60% 95%/72%/86% 97%/56%/80%
Dmax 80%/95%/80% 90%/73%/86% 81%/97%/82%
Dmin 92%/50%/72% 90%/78%/87% 93%/68%/86%

Table 29: R0 vs all final diabetic retinopathy grading results on the
Messidor database with sensitivity as energy function using different
combination and search strategies. Each cell contains the sensitivity,
the specificity and the accurracy of the ensembles, respectively.
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Compared to the classification performance of the MA-only early
detection framework discussed in section 3, the improvement using
the final decision framework is significant: the most accurate result
achieved by the MA detector achieved 76% sensitivity, 88% specificity
and 82% accuracy (see table 17), opposed to the 90% sensitivity, 91%
specificity and 90% accuracy (see table 29) of the latter approach.
Thus, the more resource-demanding final decision approach is more
reliable in DR grading, as well.
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5 Conclusion
In this thesis, ensemble-based approaches to medical decision making
are proposed. The use case for these approaches is the detection of
diabetic retinopathy (DR) in color fundus images. First, approaches
to the early detection of DR are given. Normally, the earliest sign of
DR is the presence of microaneurysms (MAs). As one of the major
contributions of the thesis, a novel approach for image processing
ensembles is presented based on the combination of preprocessing
methods and MA candidate extractors. The experimental results show
that this approach outperforms the individual MA detectors and is
currently the ranked as the first MA detector in a world-wide online
competition.

In this second part of the thesis, an ensemble-based approach for
the final decision on DR grading is described. The approach is based
on an ensemble of machine learning classifiers, which rely on features
extracted by several retinal image processing methods. The results
show that the use of this approach lead to significant improvement in
DR grading compared to the approach based on MA detection only.
However, the results achieved for MA detection presented in the first
part of the thesis is a critical component of the developed DR grading
system. The overall performance of the final DR grading is highly
competitive with other state-of-the-art systems proposed ans used for
DR grading.
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Appendix

A Pre-screening results
Our first experimental dataset consisted of 34 training and 28 test
images. Both the training and the test sets contain 50-50% normal and
abnormal cases. Ophthalmologists selected and classified these images
whether they contain serious disorder or not from three databases: the
publicly available DRIVE (section 2.1.6), DIARETDB1 (section 2.1.3)
and the database provided by the Moorfields Eye Hospital, London,
UK (section 2.1.4). Our goal is to find images, where the fundus is
abnormal to avoid obviously diseased cases to pass. These images
contain sight-threatening disorders and have a grade of R3 in a usual
retinopathy grading protocol [98]. Therefore, we label the elements
of the test database as images with serious disorder (first class) and
images to be processed further (second class). Thus, the second class
expected to contain normal or not seriously diseased cases.

For pre-filtering, we used a naive Bayes classifier and trained for the
combined features extracted from all regions of the images as disclosed
in section 4.2.3.2. Thus, a 2 · (k/Z) · (l/Z) feature vector is extracted
for each image. With this approach, we have successfully classified all
elements of the test dataset. That is, the accuracy in this case is 100%.

To make the approach faster, we used backward elimination [91] for
feature subset selection. That is, we have selected the best 11 regions
on each image to extract the features from them for classification.
In this case, our approach still provided no false predictions with an
elapsed time below milliseconds.

We have also tested our approach on the Messidor database (section
2.1.5). This database is dedicated to measure the performance of
screening systems by providing grading scores for each image. The
grades are from R0 to R3, where R0 represents no retinopathy and
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R3 is the most serious case of this disease based on the type and the
number of the lesions appearing in the images. We have selected the
two classes as the follows: abnormal (R3) and images that need further
analysis (R0, R1, R2). Our approach achieved an accuracy of 82%
with 81% sensitivity and 82% specificity on this dataset. Most of
the error originates from the false classification of R2 cases (52% of
all misclassified images are from this class), while a smaller portion
of R1 and R3 images also classified wrongly (25% and 23% of all
misclassification occurred in these images, respectively).
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B Macula detection results
We have tested our approach on 199 images from three publicly available
data sources: DiaretDB0 (section 2.1.2), DiaretDB1 (section 2.1.3) and
DRIVE (section 2.1.6). To compare our detector to state-of-the-art
macula detectors, we also evaluated the following algorithms on the
same data: Petsatodis et al. [99], Sekhar et al. [100], Fleming et al.
[101], and Zana et al. [102].

We have evaluated our approach from two aspects [95]: whether
the detected macula center falls into the 0.5DD (Optic Disc Diameter)
distance of the manually selected macula center and we also measured
the Euclidean distance of them (calculated on normalized images).
Table 30 and 31 contain the quantitative results using these measures,
respectively. We disclose the results for each macula detector evaluated
in all dataset. For the more straightforward comparison, we also
calculated the simple average of these performance values. In the terms
of the first measure, the use of the proposed algorithm on the novel
macula detector resulted in a 85% average accuracy, while the second
best method only earned 77%. However, regarding the Euclidean error
it is only third in the comparison, mainly because of its difficulties on
the DRIVE database.

Dataset Petsatodis Sekhar Fleming Zana Proposed
DiaretDB0 68% 72% 85% 63% 86%
DiaretDB1 62% 76% 79% 71% 92%
DRIVE 66% 76% 53% 82% 68%
Average 66% 74% 77% 69% 85%

Table 30: Percentage of detected macula centers falling in the correct
region.

104



Dataset Petsatodis Sekhar Fleming Zana Proposed
DiaretDB0 26.59 26.85 37.82 24.11 24.02
DiaretDB1 26.32 27.45 35.67 24.77 25.72
DRIVE 18.15 26.20 37.29 20.85 30.25
Average 23.69 26.83 36.92 23.24 26.75

Table 31: Average euclidean distance of the detected macula centers
from the manually selected ones.

C Summary
In this PhD thesis, two approaches are shown to support medical
decision-making for diabetic retinopathy (DR). This disease is one
of the most common causes of blindness in the developed countries.
Thus, timely and precise detection is essential for a large population.
Furthermore, high reliability of the diagnosis is also desired. The
approaches presented in this thesis are based on the analysis of retinal
images. To ensure reliability, we proposed ensemble-based approaches.

First, an approach for the early detection of DR is described. The
key to early detection is the timely recognition of a lesion called mi-
croaneurysm (MA). Since MA detectors provides the spatial locations
of MA candidates as output, the application of standard ensemble-
based strategies does not provide appropriate solution. Thus, a spatial
combination method is developed, whose details are presented in this
thesis. This approach is based on the novel concept of 〈preprocessing
method, candidate extractor〉 ensembles, which is shown to be effective
in improving the sensitivity of MA candidate extraction and with the
use of spatial voting, the false detections are also suppressed. For the
creation of 〈preprocessing method, candidate extractor〉 ensembles, two
approaches are introduced. First, a search-based selection approach is
presented based on the performance of the ensembles on a training set.
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Furthermore, we investigate the effect of using context-dependent infor-
mation and use this information to assign weights to the participating
〈preprocessing method, candidate extractor〉 pairs in the ensembles.
Experimental results show superiority over individual approaches for
both cases. Especially, our approach is currently ranked as first in
a world-wide online competition dedicated to the comparison of the
performance of MA detectors.

In addition, an ensemble-based approach to the grading of DR
is proposed in this thesis. This approach is based on the outputs of
several retinal image processing algorithms, such as lesion detection
(microaneurysms, exudates), anatomical parts (macula, optic disc,
vascular system), image features (diameter of the region-of-interest)
and global DR descriptors (AM/FM filtering, quality assessment).
From the output of these methods, certain features are extracted and
an ensemble of classifiers is trained. Reasurring results are obtained
using this technique for DR grading with highly competitive other
state-of-the-art systems. Compared to the classification performance
of the MA-only early detection framework, the improvement using
the final decision framework is significant. As a closing remark, we
conclude that the more resource-demanding final decision approach is
also more reliable in DR grading.
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D Összefoglaló
Ezen PhD disszertációban két módszert mutattunk be a diabéteszes
retinopátiával (DR) kapcsolatos automatikus klinikai döntéshozatal
támogatásához. Ez a betegség a vakság kialakulásának egyik legje-
lentősebb oka a fejlett világban, így a DR gyors és precíz felismerése
nagy populációt érintő feladat. A diagnózissal szemben további el-
várás a nagy megbízhatóság. A disszertációban található módszerek
retinaképek feldolgozásán alapulnak. A megbízhatósági igény teljesíté-
sére a bemutatott döntéstámogató algoritmusok együttes döntéshozást
végeznek.

A dolgozatban elsőként egy, a DR korai detektálását végző mód-
szert mutatunk be. A korai detektálásban kulcsfontosságú a mik-
roaneurizmák kialakulásának időben történő felismerése. Mivel a
mikroaneurizma-detektorok az általuk mikroaneurizmaként beazonosí-
tott objektumok képen való elhelyezkedésének koordinátáit adják meg,
a hagyományos együttes döntéshozáson alapuló algoritmusok alkal-
mazása nem vezet megfelelő eredményre. A probléma megoldására
egy új, képtérbeli kombináló módszert hozunk létre. A módszer az
〈előfeldolgozó, jelöltállító〉 párokból álló összetett rendszerek fogalmát
vezeti be. Amint azt a dologzatban megmutatjuk, ez a mikroanurizma-
jelöltállítók szenzitivitásának növeléséhez biztosít alapot, és egy képtér-
beli szavazást végrehajtva a hamis detektálások számát is lecsökkenthet-
jük. Az 〈előfeldolgozó, jelöltállító〉 összetett rendszerek létrehozására
két alapvető módszert mutatunk be: először egy tanulási halmazon
végzett kiértékelésen alapuló keresési módszert, majd egy környzeti
információt figyelembe vevő súlyozási technikát ismertetünk. Az ered-
mények mindkét esetben azt mutatják, hogy az egyéni módszereket
felülmúló rendszereket hozhatunk létre a fenti technikákkal. Ezt bi-
zonyítja például, hogy az itt bemutatott mikroaneurizma-detektor
jelenleg az első helyen áll egy, a mikroaneurizma-detektorok teljesítmé-
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nyét összehasonlító nemzetközi online versenyen.
A dolgozat másik fontos új eredménye egy összetett rendszer ja-

vaslata a retinopátia szűrésére. A módszer összetett tanuláson alapul,
azaz a döntéshozás több gépi tanulási osztályozó algoritmus kimene-
tének felhasználásával történik. Az osztályozókhoz a retinakép fel-
dolgozásával nyerhetünk ki jellemzőket. A jellemzőket a különböző
retinakép-feldolgozó algoritmusok kimenetéből nyerjük ki, többek kö-
zött elváltozások (mikroaneurizmák, exudátumok), anatómiai részek
(sárgafolt, vakfolt, érhálózat), képjellemzők (a hasznos terület átmérője)
és globális leírók (AM/FM szűrők kimenete, minőségellenőrzés). A
módszer segítségével a DR-osztályozásában sikerült biztató eredmé-
nyeket elérni: A javasolt rendszer versenyképes az aktuális nemzetközi
trendet is figyelembe véve. A pusztán MA-detektáláson alapuló DR-
osztályozással összehasonlítva arra a megállapításra juthatunk, hogy a
részletes elemzést végrehajtó osztályozó rendszer nagyobb erőforrásigé-
nye kifizetődő a pontosság növekedése miatt.
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